Renamed loss_binary_mmod_ to loss_mmod_

This commit is contained in:
Davis King 2016-09-05 09:54:31 -04:00
parent d54597230b
commit 6cd2042dd0
5 changed files with 23 additions and 23 deletions

View File

@ -443,7 +443,7 @@ namespace dlib
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
class loss_binary_mmod_ class loss_mmod_
{ {
struct intermediate_detection struct intermediate_detection
{ {
@ -470,9 +470,9 @@ namespace dlib
typedef std::vector<mmod_rect> label_type; typedef std::vector<mmod_rect> label_type;
loss_binary_mmod_() {} loss_mmod_() {}
loss_binary_mmod_(mmod_options options_) : options(options_) {} loss_mmod_(mmod_options options_) : options(options_) {}
const mmod_options& get_options ( const mmod_options& get_options (
) const { return options; } ) const { return options; }
@ -671,32 +671,32 @@ namespace dlib
} }
friend void serialize(const loss_binary_mmod_& item, std::ostream& out) friend void serialize(const loss_mmod_& item, std::ostream& out)
{ {
serialize("loss_binary_mmod_", out); serialize("loss_mmod_", out);
serialize(item.options, out); serialize(item.options, out);
} }
friend void deserialize(loss_binary_mmod_& item, std::istream& in) friend void deserialize(loss_mmod_& item, std::istream& in)
{ {
std::string version; std::string version;
deserialize(version, in); deserialize(version, in);
if (version != "loss_binary_mmod_") if (version != "loss_mmod_")
throw serialization_error("Unexpected version found while deserializing dlib::loss_binary_mmod_."); throw serialization_error("Unexpected version found while deserializing dlib::loss_mmod_.");
deserialize(item.options, in); deserialize(item.options, in);
} }
friend std::ostream& operator<<(std::ostream& out, const loss_binary_mmod_& ) friend std::ostream& operator<<(std::ostream& out, const loss_mmod_& )
{ {
// TODO, add options fields // TODO, add options fields
out << "loss_binary_mmod"; out << "loss_mmod";
return out; return out;
} }
friend void to_xml(const loss_binary_mmod_& /*item*/, std::ostream& out) friend void to_xml(const loss_mmod_& /*item*/, std::ostream& out)
{ {
// TODO, add options fields // TODO, add options fields
out << "<loss_binary_mmod/>"; out << "<loss_mmod/>";
} }
private: private:
@ -857,7 +857,7 @@ namespace dlib
}; };
template <typename SUBNET> template <typename SUBNET>
using loss_binary_mmod = add_loss_layer<loss_binary_mmod_, SUBNET>; using loss_mmod = add_loss_layer<loss_mmod_, SUBNET>;
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------

View File

@ -359,7 +359,7 @@ namespace dlib
{ {
/*! /*!
WHAT THIS OBJECT REPRESENTS WHAT THIS OBJECT REPRESENTS
This object contains all the parameters that control the behavior of loss_binary_mmod_. This object contains all the parameters that control the behavior of loss_mmod_.
!*/ !*/
public: public:
@ -419,7 +419,7 @@ namespace dlib
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
class loss_binary_mmod_ class loss_mmod_
{ {
/*! /*!
WHAT THIS OBJECT REPRESENTS WHAT THIS OBJECT REPRESENTS
@ -438,21 +438,21 @@ namespace dlib
- image_space_to_tensor_space() - image_space_to_tensor_space()
A reference implementation of them and their definitions can be found in A reference implementation of them and their definitions can be found in
the input_rgb_image_pyramid object, which is the recommended input layer to the input_rgb_image_pyramid object, which is the recommended input layer to
be used with loss_binary_mmod_. be used with loss_mmod_.
!*/ !*/
public: public:
typedef std::vector<mmod_rect> label_type; typedef std::vector<mmod_rect> label_type;
loss_binary_mmod_( loss_mmod_(
); );
/*! /*!
ensures ensures
- #get_options() == mmod_options() - #get_options() == mmod_options()
!*/ !*/
loss_binary_mmod_( loss_mmod_(
mmod_options options_ mmod_options options_
); );
/*! /*!
@ -517,7 +517,7 @@ namespace dlib
}; };
template <typename SUBNET> template <typename SUBNET>
using loss_binary_mmod = add_loss_layer<loss_binary_mmod_, SUBNET>; using loss_mmod = add_loss_layer<loss_mmod_, SUBNET>;
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------

View File

@ -15,7 +15,7 @@ namespace dlib
typename image_array_type typename image_array_type
> >
const matrix<double,1,3> test_object_detection_function ( const matrix<double,1,3> test_object_detection_function (
loss_binary_mmod<SUBNET>& detector, loss_mmod<SUBNET>& detector,
const image_array_type& images, const image_array_type& images,
const std::vector<std::vector<mmod_rect>>& truth_dets, const std::vector<std::vector<mmod_rect>>& truth_dets,
const test_box_overlap& overlap_tester = test_box_overlap(), const test_box_overlap& overlap_tester = test_box_overlap(),

View File

@ -14,7 +14,7 @@ namespace dlib
typename image_array_type typename image_array_type
> >
const matrix<double,1,3> test_object_detection_function ( const matrix<double,1,3> test_object_detection_function (
loss_binary_mmod<SUBNET>& detector, loss_mmod<SUBNET>& detector,
const image_array_type& images, const image_array_type& images,
const std::vector<std::vector<mmod_rect>>& truth_dets, const std::vector<std::vector<mmod_rect>>& truth_dets,
const test_box_overlap& overlap_tester = test_box_overlap(), const test_box_overlap& overlap_tester = test_box_overlap(),
@ -27,7 +27,7 @@ namespace dlib
and it must contain objects which can be accepted by detector(). and it must contain objects which can be accepted by detector().
ensures ensures
- This function is just like the test_object_detection_function() for - This function is just like the test_object_detection_function() for
object_detector's except it runs on CNNs that use loss_binary_mmod. object_detector's except it runs on CNNs that use loss_mmod.
- Tests the given detector against the supplied object detection problem and - Tests the given detector against the supplied object detection problem and
returns the precision, recall, and average precision. Note that the task is returns the precision, recall, and average precision. Note that the task is
to predict, for each images[i], the set of object locations given by to predict, for each images[i], the set of object locations given by

View File

@ -145,7 +145,7 @@ namespace dlib
/*! /*!
WHAT THIS OBJECT REPRESENTS WHAT THIS OBJECT REPRESENTS
This is a simple struct that is used to give training data and receive detections This is a simple struct that is used to give training data and receive detections
from the Max-Margin Object Detection loss layer loss_binary_mmod_ object. from the Max-Margin Object Detection loss layer loss_mmod_ object.
!*/ !*/
mmod_rect() = default; mmod_rect() = default;