mirror of https://github.com/davisking/dlib.git
Updated numeric_constants.h. Added a first version of
a numerical integration method to /examples/adapt_simp.cpp
This commit is contained in:
parent
835e0bd888
commit
691e1ab17a
|
@ -12,13 +12,16 @@ namespace dlib
|
|||
// e -- Euler's Constant
|
||||
const double e = 2.7182818284590452354;
|
||||
|
||||
// sqrt_2 -- the square root of 2
|
||||
// sqrt_2 -- The square root of 2
|
||||
const double sqrt_2 = 1.4142135623730950488;
|
||||
|
||||
// sqrt_3 -- the square root of 3
|
||||
// sqrt_3 -- The square root of 3
|
||||
const double sqrt_3 = 1.7320508075688772935;
|
||||
|
||||
// light_spd -- the speed of light in vacuum in meters per second
|
||||
// log10_2 -- The logarithm base 10 of two
|
||||
const double log10_2 = 0.30102999566398119521;
|
||||
|
||||
// light_spd -- The speed of light in vacuum in meters per second
|
||||
const double light_spd = 2.99792458e8;
|
||||
|
||||
// newton_G -- Newton's gravitational constant (in metric units of m^3/(kg*s^2))
|
||||
|
@ -27,6 +30,23 @@ namespace dlib
|
|||
// planck_cst -- Planck's constant (in units of Joules * seconds)
|
||||
const double planck_cst = 6.62606957e-34;
|
||||
|
||||
// golden_ratio -- The Golden Ratio
|
||||
const double golden_ratio = 1.6180339887498948482;
|
||||
|
||||
// euler_gamma -- The Euler Mascheroni Constant
|
||||
const double euler_gamma = 0.5772156649015328606065;
|
||||
|
||||
// catalan -- Catalan's Constant
|
||||
const double catalan = 0.91596559417721901505;
|
||||
|
||||
// glaisher -- Glaisher Kinkelin constant
|
||||
const double glaisher = 1.2824271291006226369;
|
||||
|
||||
// khinchin -- Khinchin's constant
|
||||
const double khinchin = 2.6854520010653064453;
|
||||
|
||||
// apery -- Apery's constant
|
||||
const double apery = 1.2020569031595942854;
|
||||
}
|
||||
|
||||
#endif //DLIB_NUMERIC_CONSTANTs_H_
|
||||
|
|
|
@ -0,0 +1,362 @@
|
|||
// Numerical Integration method based on the adaptive Simpson method in
|
||||
// Gander, W. and W. Gautschi, "Adaptive Quadrature – Revisited,"
|
||||
// BIT, Vol. 40, 2000, pp. 84-101
|
||||
|
||||
// Test functions taken from Pedro Gonnet's dissertation at ETH:
|
||||
// Adaptive Quadrature Re-Revisited
|
||||
// http://e-collection.library.ethz.ch/eserv/eth:65/eth-65-02.pdf
|
||||
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <stdint.h>
|
||||
#include <dlib/matrix.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace dlib;
|
||||
|
||||
//***************************************************************//
|
||||
//*Begin definitions of test functions //
|
||||
|
||||
//Initial Test Function
|
||||
double f(double x)
|
||||
{
|
||||
return pow(x,0.5);
|
||||
}
|
||||
|
||||
// The Lyness - Kaganove test functions from page 167 of Gonnet's thesis.
|
||||
|
||||
// lambda in [0,1], alpha in [-0.5,0], x in [0,1]
|
||||
double LK1(double x, double lambda, double alpha)
|
||||
{
|
||||
return pow(abs(x-lambda),alpha);
|
||||
}
|
||||
|
||||
// lambda in [0,1], alpha in [0,1], x in [0,1]
|
||||
double LK2(double x, double lambda, double alpha)
|
||||
{
|
||||
if(x > lambda)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
return pow(e, alpha*x);
|
||||
}
|
||||
}
|
||||
|
||||
// lambda in [0,1], alpha in [0,4], x in [0,1]
|
||||
double LK3(double x, double lambda, double alpha)
|
||||
{
|
||||
return pow(e,-alpha*abs(x-lambda));
|
||||
}
|
||||
|
||||
// lambda in [1,2], alpha in [-6,-3], x in [1,2]
|
||||
double LK4(double x, double lambda, double alpha)
|
||||
{
|
||||
return pow(10,alpha)/((x-lambda)*(x-lambda)+pow(10,alpha));
|
||||
}
|
||||
|
||||
// lambda_i in [1,2], alpha in [-5,-3], x in [1,2]
|
||||
double LK5(double x, double lambda1, double lambda2, double lambda3, double lambda4, double alpha)
|
||||
{
|
||||
return pow(10,alpha)/((x-lambda1)*(x-lambda1)+pow(10,alpha))
|
||||
+ pow(10,alpha)/((x-lambda2)*(x-lambda2)+pow(10,alpha))
|
||||
+ pow(10,alpha)/((x-lambda3)*(x-lambda3)+pow(10,alpha))
|
||||
+ pow(10,alpha)/((x-lambda4)*(x-lambda4)+pow(10,alpha));
|
||||
}
|
||||
|
||||
// lambda in [0,1], alpha in [1.8,2], x in [0,1]
|
||||
double LK6(double x, double lambda, double alpha)
|
||||
{
|
||||
double beta = pow(10,alpha)/max(lambda*lambda,(1-lambda)*(1-lambda));
|
||||
return 2*beta*cos(beta*(x-lambda)*(x-lambda));
|
||||
}
|
||||
|
||||
// Test Battery from reference [33] and p. 168 of Gonnet's thesis.
|
||||
|
||||
// x in [0,1]
|
||||
double GG1(double x)
|
||||
{
|
||||
return pow(e,x);
|
||||
}
|
||||
|
||||
// x in [0,1]
|
||||
double GG2(double x)
|
||||
{
|
||||
if(x > 0.3)
|
||||
{
|
||||
return 1.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// x in [0,1]
|
||||
double GG3(double x)
|
||||
{
|
||||
return pow(x,0.5);
|
||||
}
|
||||
|
||||
// x in [0,1]
|
||||
double GG4(double x)
|
||||
{
|
||||
return 22/25*cosh(x)-cos(x);
|
||||
}
|
||||
|
||||
// x in [-1,1]
|
||||
double GG5(double x)
|
||||
{
|
||||
return 1/(pow(x,4) + pow(x,2) + 0.9);
|
||||
}
|
||||
|
||||
// x in [0,1]
|
||||
double GG6(double x)
|
||||
{
|
||||
return pow(x,1.5);
|
||||
}
|
||||
|
||||
// x in [0,1]
|
||||
double GG7(double x)
|
||||
{
|
||||
return pow(x,-0.5);
|
||||
}
|
||||
|
||||
// x in [0,1]
|
||||
double GG8(double x)
|
||||
{
|
||||
return 1/(1 + pow(x,4));
|
||||
}
|
||||
|
||||
// x in [0,1]
|
||||
double GG9(double x)
|
||||
{
|
||||
return 2/(2 + sin(10*pi*x));
|
||||
}
|
||||
|
||||
// x in [0,1]
|
||||
double GG10(double x)
|
||||
{
|
||||
return 1/(1+x);
|
||||
}
|
||||
|
||||
// x in [0,1]
|
||||
double GG11(double x)
|
||||
{
|
||||
1/(1 + pow(e,x));
|
||||
}
|
||||
|
||||
// x in [0,1]
|
||||
double GG12(double x)
|
||||
{
|
||||
return x/(pow(e,x)-1);
|
||||
}
|
||||
|
||||
// x in [0.1, 1]
|
||||
double GG13(double x)
|
||||
{
|
||||
return sin(100.0*pi*x)/(pi*x);
|
||||
}
|
||||
|
||||
// x in [0, 10]
|
||||
double GG14(double x)
|
||||
{
|
||||
return sqrt(50)*pow(e,-50.0*pi*x*x);
|
||||
}
|
||||
|
||||
// x in [0, 10]
|
||||
double GG15(double x)
|
||||
{
|
||||
return 25.0*pow(e,-25.0*x);
|
||||
}
|
||||
|
||||
// x in [0, 10]
|
||||
double GG16(double x)
|
||||
{
|
||||
return 50.0/(pi*(2500.0*x*x+1));
|
||||
}
|
||||
|
||||
// x in [0.01, 1]
|
||||
double GG17(double x)
|
||||
{
|
||||
return 50.0*pow((sin(50.0*pi*x)/(50.0*pi*x)),2);
|
||||
}
|
||||
|
||||
// x in [0, pi]
|
||||
double GG18(double x)
|
||||
{
|
||||
return cos(cos(x)+3*sin(x)+2*cos(2*x)+3*cos(3*x));
|
||||
}
|
||||
|
||||
// x in [0,1]
|
||||
double GG19(double x)
|
||||
{
|
||||
return log10(x);
|
||||
}
|
||||
|
||||
// x in [-1,1]
|
||||
double GG20(double x)
|
||||
{
|
||||
return 1/(1.005+x*x);
|
||||
}
|
||||
|
||||
// x in [0,1]
|
||||
double GG21(double x)
|
||||
{
|
||||
return 1/cosh(20.0*(x-1/5)) + 1/cosh(400.0*(x-2/5)) + 1/cosh(8000.0*(x-3/5));
|
||||
}
|
||||
|
||||
// x in [0,1]
|
||||
double GG22(double x)
|
||||
{
|
||||
return 4*pi*pi*x*sin(20.0*pi*x)*cos(2*pi*x);
|
||||
}
|
||||
|
||||
// x in [0,1]
|
||||
double GG23(double x)
|
||||
{
|
||||
return 1/(1+(230*x-30)*(230*x-30));
|
||||
}
|
||||
|
||||
// x in [0,3]
|
||||
double GG24(double x)
|
||||
{
|
||||
return floor(pow(e,x));
|
||||
}
|
||||
|
||||
// x in [0,5]
|
||||
double GG25(double x)
|
||||
{
|
||||
if(x < 1)
|
||||
{
|
||||
return (x + 1);
|
||||
}
|
||||
else if(x >= 1 && x <= 3)
|
||||
{
|
||||
return 3 - x;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 2;
|
||||
}
|
||||
}
|
||||
|
||||
// Returns double machine precision
|
||||
// Taken from Wikipedia en.wikipedia.org/wiki/Machine_epsilon
|
||||
template<typename float_t, typename int_t>
|
||||
float_t machine_eps()
|
||||
{
|
||||
union
|
||||
{
|
||||
float_t f;
|
||||
int_t i;
|
||||
} one, one_plus, little, last_little;
|
||||
|
||||
one.f = 1.0;
|
||||
little.f = 1.0;
|
||||
last_little.f = little.f;
|
||||
|
||||
while(true)
|
||||
{
|
||||
one_plus.f = one.f;
|
||||
one_plus.f += little.f;
|
||||
|
||||
if( one.i != one_plus.i )
|
||||
{
|
||||
last_little.f = little.f;
|
||||
little.f /= 2.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
return last_little.f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Main Integration Function.
|
||||
// Supporting Integration Function
|
||||
template <typename T, typename funct>
|
||||
T AdaptSimpstp(const funct& f, T a, T b, T fa, T fm, T fb, T is)
|
||||
{
|
||||
T m = (a + b)/2;
|
||||
T h = (b - a)/4;
|
||||
T fml = f(a + h);
|
||||
T fmr = f(b - h);
|
||||
T i1 = h/1.5*(fa+4*fm+fb);
|
||||
T i2 = h/3.0*(fa+4*(fml+fmr)+2*fm+fb);
|
||||
i1 = (16.0*i2 - i1)/15.0;
|
||||
T Q = 0;
|
||||
|
||||
if((is+(i1-i2) == is) || (m <= a) || (b <= m))
|
||||
{
|
||||
if((m <= a) || (b <= m))
|
||||
{
|
||||
cout << "INT ERR" << endl;
|
||||
}
|
||||
|
||||
Q = i1;
|
||||
}
|
||||
else
|
||||
{
|
||||
Q = AdaptSimpstp(f, a, m, fa, fml, fm, is) + AdaptSimpstp(f,m,b,fm,fmr,fb,is);
|
||||
}
|
||||
|
||||
return Q;
|
||||
}
|
||||
|
||||
// Main integration function.
|
||||
// f -- function to integrate,
|
||||
// a -- left end point
|
||||
// b -- right end point
|
||||
// tol -- error tolerance
|
||||
|
||||
template <typename T, typename funct>
|
||||
T AdaptSimp(const funct& f, T a, T b, T tol)
|
||||
{
|
||||
T eps = machine_eps<T, uint64_t>();
|
||||
|
||||
if(tol < eps)
|
||||
{
|
||||
tol = eps;
|
||||
}
|
||||
|
||||
const T ba = b-a;
|
||||
const T fa = f(a);
|
||||
const T fb = f(b);
|
||||
const T fm = f((a+b)/2);
|
||||
|
||||
T is =ba/8*(fa+fb+fm+ f(a + 0.9501*ba) + f(a + 0.2311*ba) + f(a + 0.6068*ba)
|
||||
+ f(a + 0.4860*ba) + f(a + 0.8913*ba));
|
||||
|
||||
if(is == 0)
|
||||
{
|
||||
is = b-a;
|
||||
}
|
||||
|
||||
is = is*tol/eps;
|
||||
|
||||
T tstvl = AdaptSimpstp(f, a, b, fa, fm, fb, is);
|
||||
|
||||
return tstvl;
|
||||
|
||||
}
|
||||
|
||||
// Examples
|
||||
int main()
|
||||
{
|
||||
|
||||
typedef double T;
|
||||
|
||||
T tol = 1e-10;
|
||||
T a = 0;
|
||||
T b = 5;
|
||||
|
||||
T tstvl2 = AdaptSimp(&f, a, b, tol);
|
||||
|
||||
cout << "Integral Value is: " << std::setprecision(18) << tstvl2 << endl;
|
||||
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue