Moved the new multiclass svm trainer into dlib. Still need to clean up the code

and setup the abstract file.

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%404195
This commit is contained in:
Davis King 2011-03-24 01:52:44 +00:00
parent 7cf342f994
commit 640acab208
3 changed files with 179 additions and 0 deletions

View File

@ -38,6 +38,7 @@
#include "svm/one_vs_all_trainer.h"
#include "svm/structural_svm_problem.h"
#include "svm/svm_multiclass_linear_trainer.h"
#endif // DLIB_SVm_HEADER

View File

@ -0,0 +1,178 @@
// Copyright (C) 2011 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_SVm_MULTICLASS_LINEAR_TRAINER_H__
#define DLIB_SVm_MULTICLASS_LINEAR_TRAINER_H__
#include "svm_multiclass_linear_trainer_abstract.h"
#include <vector>
#include "../optimization/optimization_oca.h"
#include "../matrix.h"
#include "sparse_vector.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename matrix_type,
typename sample_type,
typename label_type
>
class multiclass_svm_problem : public structural_svm_problem<matrix_type,
std::vector<std::pair<unsigned long,typename matrix_type::type> > >
{
public:
typedef typename matrix_type::type scalar_type;
typedef std::vector<std::pair<unsigned long,scalar_type> > feature_vector_type;
multiclass_svm_problem (
const std::vector<sample_type>& samples_,
const std::vector<label_type>& labels_
) :
samples(samples_),
labels(labels_),
distinct_labels(select_all_distinct_labels(labels_)),
dims(sparse_vector::max_index_plus_one(samples_)+1) // +1 for the bias
{}
virtual long get_num_dimensions (
) const
{
return dims*distinct_labels.size();
}
virtual long get_num_samples (
) const
{
return static_cast<long>(samples.size());
}
virtual void get_truth_joint_feature_vector (
long idx,
feature_vector_type& psi
) const
{
sparse_vector::assign(psi, samples[idx]);
// Add a constant -1 to account for the bias term.
psi.push_back(std::make_pair(dims-1,-1));
// Find which distinct label goes with this psi.
const long label_idx = index_of_max(vector_to_matrix(distinct_labels) == labels[idx]);
offset_feature_vector(psi, dims*label_idx);
}
virtual void separation_oracle (
const long idx,
const matrix_type& current_solution,
scalar_type& loss,
feature_vector_type& psi
) const
{
scalar_type best_val = -std::numeric_limits<scalar_type>::infinity();
unsigned long best_idx = 0;
// figure out which label is the best
for (unsigned long i = 0; i < distinct_labels.size(); ++i)
{
using sparse_vector::dot;
// perform: temp == dot(relevant part of current solution, samples[idx]) - current_bias
scalar_type temp = dot(rowm(current_solution, range(i*dims, (i+1)*dims-2)), samples[idx]) - current_solution((i+1)*dims-1);
if (labels[idx] != distinct_labels[i])
temp += 1;
if (temp > best_val)
{
best_val = temp;
best_idx = i;
}
}
sparse_vector::assign(psi, samples[idx]);
// add a constant -1 to account for the bias term
psi.push_back(std::make_pair(dims-1,-1));
offset_feature_vector(psi, dims*best_idx);
if (distinct_labels[best_idx] == labels[idx])
loss = 0;
else
loss = 1;
}
private:
void offset_feature_vector (
feature_vector_type& sample,
const unsigned long val
) const
{
if (val != 0)
{
for (typename feature_vector_type::iterator i = sample.begin(); i != sample.end(); ++i)
{
i->first += val;
}
}
}
const std::vector<sample_type>& samples;
const std::vector<label_type>& labels;
const std::vector<label_type> distinct_labels;
const long dims;
};
// ----------------------------------------------------------------------------------------
template <
typename K,
typename label_type_ = typename K::scalar_type
>
class svm_multiclass_linear_trainer
{
public:
typedef label_type_ label_type;
typedef K kernel_type;
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
typedef multiclass_linear_decision_function<kernel_type, label_type> trained_function_type;
trained_function_type train (
const std::vector<sample_type>& all_samples,
const std::vector<label_type>& all_labels
) const
{
oca solver;
typedef matrix<scalar_type,0,1> w_type;
w_type weights;
multiclass_svm_problem<w_type, sample_type, label_type> problem(all_samples, all_labels);
problem.be_verbose();
problem.set_max_cache_size(0);
problem.set_c(100);
solver(problem, weights);
trained_function_type df;
const long dims = sparse_vector::max_index_plus_one(all_samples);
df.labels = select_all_distinct_labels(all_labels);
df.weights = colm(reshape(weights, df.labels.size(), dims+1), range(0,dims-1));
df.b = colm(reshape(weights, df.labels.size(), dims+1), dims);
return df;
}
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_SVm_MULTICLASS_LINEAR_TRAINER_H__