Cleaned up code a little and made the example use a better version of the architecture.

This commit is contained in:
Davis King 2016-05-22 13:17:10 -04:00
parent b73dacc163
commit 5e70b7a2c6
1 changed files with 96 additions and 47 deletions

View File

@ -20,29 +20,76 @@ using namespace dlib;
// ----------------------------------------------------------------------------------------
// Let's start by showing how you can conveniently define large networks. The
// most important tool for doing this are C++'s alias templates. These let us
// define new layer types that are combinations of a bunch of other layers.
// These will form the building blocks for more complex networks.
// Let's start by showing how you can conveniently define large and complex
// networks. The most important tool for doing this are C++'s alias templates.
// These let us define new layer types that are combinations of a bunch of other
// layers. These will form the building blocks for more complex networks.
// So let's begin by defining the building block of a residual network (see
// Figure 2 in Deep Residual Learning for Image Recognition by He, Zhang, Ren,
// and Sun). You can see a few things in this statement. The most obvious is
// that we have combined a bunch of layers into the name "base_res". You can
// also see the use of the tag1 layer. This layer doesn't do any computation.
// It exists solely so other layers can refer to it. In this case, the
// add_prev1 layer looks for the tag1 layer and will take the tag1 output and
// add it to the input of the add_prev1 layer. This combination allows us to
// implement skip and residual style networks. We have also made base_res
// parameterized by BN, which will let us insert different batch normalization
// layers.
template <template <typename> class BN, typename SUBNET>
using base_res = relu<add_prev1<BN<con<8,3,3,1,1,relu<BN<con<8,3,3,1,1,tag1<SUBNET>>>>>>>>;
// and Sun). We are going to decompose the residual block into a few alias
// statements. First, we define the core block.
// Here we have parameterized the "block" layer on a BN layer (nominally some
// kind of batch normalization), the number of filter outputs N, and the stride
// the block operates at.
template <
int N,
template <typename> class BN,
int stride,
typename SUBNET
>
using block = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;
// Next, we need to define the skip layer mechanism used in the residual network
// paper. They create their blocks by adding the input tensor to the output of
// each block. So we define an alias statement that takes a block and wraps it
// with this skip/add structure.
// Note the tag layer. This layer doesn't do any computation. It exists solely
// so other layers can refer to it. In this case, the add_prev1 layer looks for
// the tag1 layer and will take the tag1 output and add it to the input of the
// add_prev1 layer. This combination allows us to implement skip and residual
// style networks. We have also set the block stride to 1 in this statement.
// The significance of that is explained next.
template <
template <int,template<typename>class,int,typename> class block,
int N,
template<typename>class BN,
typename SUBNET
>
using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;
// Some residual blocks do downsampling. They do this by using a stride of 2
// instead of 1. However, when downsampling we need to also take care to
// downsample the part of the network that adds the original input to the output
// or the sizes won't make sense (the network will still run, but the results
// aren't as good). So here we define a downsampling version of residual. In
// it, we make use of the skip1 layer. This layer simply outputs whatever is
// output by the tag1 layer. Therefore, the skip1 layer (there are also skip2,
// skip3, etc. in dlib) allows you to create branching network structures.
// residual_down creates a network structure like this:
/*
input from SUBNET
/ \
/ \
block downsample(using avg_pool)
\ /
\ /
add tensors (using add_prev2 which adds the output of tag2 with avg_pool's output)
|
output
*/
template <
template <int,template<typename>class,int,typename> class block,
int N,
template<typename>class BN,
typename SUBNET
>
using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;
// We also want a residual block that begins by doing downsampling. We can
// reuse base_res to define it like this:
template <template <typename> class BN, typename SUBNET>
using base_res_down = base_res<BN,avg_pool<1,1,2,2,SUBNET>>;
// Now we can define 4 different residual blocks we will use in this example.
// The first two are non-downsampling residual blocks while the last two
@ -50,10 +97,10 @@ using base_res_down = base_res<BN,avg_pool<1,1,2,2,SUBNET>>;
// ares_down have had the batch normalization replaced with simple affine
// layers. We will use the affine version of the layers when testing our
// networks.
template <typename SUBNET> using res = base_res<bn_con,SUBNET>;
template <typename SUBNET> using ares = base_res<affine,SUBNET>;
template <typename SUBNET> using res_down = base_res_down<bn_con,SUBNET>;
template <typename SUBNET> using ares_down = base_res_down<affine,SUBNET>;
template <typename SUBNET> using res = relu<residual<block,8,bn_con,SUBNET>>;
template <typename SUBNET> using ares = relu<residual<block,8,affine,SUBNET>>;
template <typename SUBNET> using res_down = relu<residual_down<block,8,bn_con,SUBNET>>;
template <typename SUBNET> using ares_down = relu<residual_down<block,8,affine,SUBNET>>;
@ -145,39 +192,41 @@ int main(int argc, char** argv) try
// These print statements will output this (I've truncated it since it's
// long, but you get the idea):
/*
The pnet has 127 layers in it.
The pnet has 131 layers in it.
layer<0> loss_multiclass_log
layer<1> fc (num_outputs=10)
layer<1> fc (num_outputs=10) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<2> avg_pool (nr=0, nc=0, stride_y=1, stride_x=1, padding_y=0, padding_x=0)
layer<3> prelu (initial_param_value=0.2)
layer<4> add_prev
layer<5> bn_con
layer<6> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1)
layer<5> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0
layer<6> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<7> prelu (initial_param_value=0.25)
layer<8> bn_con
layer<9> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1)
layer<8> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0
layer<9> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<10> tag1
...
layer<33> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1)
layer<34> tag1
layer<35> avg_pool (nr=1, nc=1, stride_y=2, stride_x=2, padding_y=0, padding_x=0)
layer<36> tag4
layer<37> prelu (initial_param_value=0.3)
layer<38> add_prev
layer<39> bn_con
layer<34> relu
layer<35> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0
layer<36> con (num_filters=8, nr=3, nc=3, stride_y=2, stride_x=2, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<37> tag1
layer<38> tag4
layer<39> prelu (initial_param_value=0.3)
layer<40> add_prev
layer<41> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0
...
layer<115> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1)
layer<116> tag1
layer<117> avg_pool (nr=1, nc=1, stride_y=2, stride_x=2, padding_y=0, padding_x=0)
layer<118> relu
layer<119> add_prev
layer<120> bn_con
layer<121> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1)
layer<119> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0
layer<120> con (num_filters=8, nr=3, nc=3, stride_y=2, stride_x=2, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<121> tag1
layer<122> relu
layer<123> bn_con
layer<124> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1)
layer<125> tag1
layer<126> input<matrix>
layer<123> add_prev
layer<124> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0
layer<125> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<126> relu
layer<127> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0
layer<128> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<129> tag1
layer<130> input<matrix>
*/
// Now that we know the index numbers for each layer, we can access them
@ -195,7 +244,7 @@ int main(int argc, char** argv) try
// parts of your network and access them by layer<tag>(). You can also
// index relative to a tag. So for example, to access the layer immediately
// after tag4 you can say:
layer<tag4,1>(pnet); // Equivalent to layer<36+1>(pnet).
layer<tag4,1>(pnet); // Equivalent to layer<38+1>(pnet).
// Or to access the layer 2 layers after tag4:
layer<tag4,2>(pnet);