mirror of https://github.com/davisking/dlib.git
Changed the way the parameter search is done so that it will produce more reasonable results
for a wider range of datasets. This way people who cut and paste from this code should have an easier time getting it to work with their data. --HG-- extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403752
This commit is contained in:
parent
22c58d2b2b
commit
5a019f0a04
|
@ -104,7 +104,7 @@ int main()
|
|||
// should look at the model_selection_ex.cpp program for examples of more sophisticated
|
||||
// strategies for determining good parameter choices.
|
||||
cout << "doing cross validation" << endl;
|
||||
for (double gamma = 0.00001; gamma <= 1; gamma += 0.1)
|
||||
for (double gamma = 0.000001; gamma <= 1; gamma *= 5)
|
||||
{
|
||||
// tell the trainer the parameters we want to use
|
||||
trainer.set_kernel(kernel_type(gamma));
|
||||
|
@ -119,12 +119,12 @@ int main()
|
|||
|
||||
|
||||
// From looking at the output of the above loop it turns out that a good value for
|
||||
// gamma for this problem is 0.1. So that is what we will use.
|
||||
// gamma for this problem is 0.08. So that is what we will use.
|
||||
|
||||
// Now we train on the full set of data and obtain the resulting decision function. We use the
|
||||
// value of 0.1 for gamma. The decision function will return values >= 0 for samples it predicts
|
||||
// value of 0.08 for gamma. The decision function will return values >= 0 for samples it predicts
|
||||
// are in the +1 class and numbers < 0 for samples it predicts to be in the -1 class.
|
||||
trainer.set_kernel(kernel_type(0.1));
|
||||
trainer.set_kernel(kernel_type(0.08));
|
||||
typedef decision_function<kernel_type> dec_funct_type;
|
||||
typedef normalized_function<dec_funct_type> funct_type;
|
||||
|
||||
|
|
Loading…
Reference in New Issue