Added a BOBYQA example.

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403216
This commit is contained in:
Davis King 2009-09-20 15:33:09 +00:00
parent 1f93746e33
commit 59409fb50d
1 changed files with 20 additions and 1 deletions

View File

@ -5,7 +5,7 @@
routines from the dlib C++ Library.
The library provides implementations of the conjugate gradient,
BFGS and L-BFGS optimization algorithms. These algorithms allow
BFGS, L-BFGS, and BOBYQA optimization algorithms. These algorithms allow
you to find the minimum of a function of many input variables.
This example walks though a few of the ways you might put these
routines to use.
@ -208,5 +208,24 @@ int main()
test_function(target), starting_point, -1);
cout << starting_point << endl;
// Finally, lets try the BOBYQA algorithm. This is a technique specially
// designed to minimize a function in the absence of derivative information.
// Generally speaking, it is the method of choice if derivatives are not available.
// For the details on what the parameters to this function represent see its documentation.
starting_point = -4,5,99,3;
find_min_bobyqa(test_function(target),
starting_point,
9, // number of interpolation points
uniform_matrix<double>(4,1, -1e100), // lower bound constraint
uniform_matrix<double>(4,1, 1e100), // upper bound constraint
10, // initial trust region radius
1e-6, // stopping trust region radius
100 // max number of objective function evaluations
);
cout << starting_point << endl;
}