mirror of https://github.com/davisking/dlib.git
updated docs
This commit is contained in:
parent
33665c7848
commit
57f49b303a
|
@ -52,6 +52,8 @@
|
|||
<item>max_sum_submatrix</item>
|
||||
<item>find_max_factor_graph_nmplp</item>
|
||||
<item>find_max_factor_graph_viterbi</item>
|
||||
<item>find_max_factor_graph_potts</item>
|
||||
<item>min_cut</item>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
|
@ -72,6 +74,8 @@
|
|||
<item>poly_min_extrap</item>
|
||||
<item>lagrange_poly_min_extrap</item>
|
||||
<item>line_search</item>
|
||||
<item>graph_cut_score</item>
|
||||
<item>potts_model_score</item>
|
||||
</section>
|
||||
|
||||
</top>
|
||||
|
@ -532,6 +536,76 @@ subject to the following constraint:
|
|||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
<name>potts_model_score</name>
|
||||
<file>dlib/graph_cuts.h</file>
|
||||
<spec_file link="true">dlib/graph_cuts/find_max_factor_graph_potts_abstract.h</spec_file>
|
||||
<description>
|
||||
This routine computes the model score for a Potts problem and a
|
||||
candidate labeling. This score is the quantity maximised
|
||||
by the <a href="#find_max_factor_graph_potts">find_max_factor_graph_potts</a>
|
||||
routine.
|
||||
</description>
|
||||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
<name>graph_cut_score</name>
|
||||
<file>dlib/graph_cuts.h</file>
|
||||
<spec_file link="true">dlib/graph_cuts/min_cut_abstract.h</spec_file>
|
||||
<description>
|
||||
This routine computes the score for a candidate graph cut. This is the
|
||||
quantity minimized by the <a href="#min_cut">min_cut</a> algorithm.
|
||||
</description>
|
||||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
<name>min_cut</name>
|
||||
<file>dlib/graph_cuts.h</file>
|
||||
<spec_file link="true">dlib/graph_cuts/min_cut_abstract.h</spec_file>
|
||||
<description>
|
||||
This is a function object which can be used to find the min cut
|
||||
on a graph.
|
||||
The implementation is based on the method described in the following
|
||||
paper:
|
||||
<blockquote>
|
||||
An Experimental Comparison of Min-Cut/Max-Flow Algorithms for
|
||||
Energy Minimization in Vision, by Yuri Boykov and Vladimir Kolmogorov,
|
||||
in PAMI 2004.
|
||||
</blockquote>
|
||||
</description>
|
||||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
<name>find_max_factor_graph_potts</name>
|
||||
<file>dlib/graph_cuts.h</file>
|
||||
<spec_file link="true">dlib/graph_cuts/find_max_factor_graph_potts_abstract.h</spec_file>
|
||||
<description>
|
||||
This function is a tool for exactly solving the MAP problem in a Potts
|
||||
model. This type of model is useful when you have a problem which
|
||||
can be modeled as a bunch of binary decisions on some variables,
|
||||
but you have some kind of labeling consistency constraint. This
|
||||
means that there is some penalty for giving certain pairs of variables
|
||||
different labels. So in addition to trying to figure out how to best
|
||||
label each variable on its own, you have to worry about making the
|
||||
labels pairwise consistent in some sense. The find_max_factor_graph_potts()
|
||||
routine can be used to find the most probable/highest scoring
|
||||
labeling for this type of model.
|
||||
<p>The implementation of this routine is based on the <a href="#min_cut">min_cut</a> object.</p>
|
||||
</description>
|
||||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
|
|
|
@ -73,6 +73,16 @@
|
|||
<term file="optimization.html" name="find_max_trust_region"/>
|
||||
<term file="optimization.html" name="find_max_factor_graph_nmplp"/>
|
||||
<term file="optimization.html" name="find_max_factor_graph_viterbi"/>
|
||||
|
||||
<term file="optimization.html" name="find_max_factor_graph_potts"/>
|
||||
<term file="optimization.html" name="min_cut"/>
|
||||
<term file="optimization.html" name="graph_cut_score"/>
|
||||
<term file="optimization.html" name="potts_model_score"/>
|
||||
<term file="dlib/graph_cuts/min_cut_abstract.h.html" name="node_label"/>
|
||||
<term link="dlib/graph_cuts/min_cut_abstract.h.html#node_label" name="SOURCE_CUT"/>
|
||||
<term link="dlib/graph_cuts/min_cut_abstract.h.html#node_label" name="SINK_CUT"/>
|
||||
<term link="dlib/graph_cuts/min_cut_abstract.h.html#node_label" name="FREE_NODE"/>
|
||||
|
||||
<term file="optimization.html" name="solve_trust_region_subproblem"/>
|
||||
<term file="optimization.html" name="find_min_single_variable"/>
|
||||
<term file="optimization.html" name="find_min_using_approximate_derivatives"/>
|
||||
|
@ -170,7 +180,7 @@
|
|||
<term file="algorithms.html" name="randomly_subsample"/>
|
||||
|
||||
<term file="ml.html" name="select_all_distinct_labels"/>
|
||||
<term file="dlib/svm/multiclass_tools_abstract.h.html#find_missing_pairs" name="find_missing_pairs"/>
|
||||
<term file="dlib/svm/multiclass_tools_abstract.h.html" name="find_missing_pairs"/>
|
||||
|
||||
<term file="ml.html" name="svm_multiclass_linear_trainer"/>
|
||||
<term link="ml.html#svm_multiclass_linear_trainer" name="Multiclass SVM"/>
|
||||
|
|
Loading…
Reference in New Issue