updated docs

This commit is contained in:
Davis King 2012-04-28 17:04:43 -04:00
parent 33665c7848
commit 57f49b303a
2 changed files with 85 additions and 1 deletions

View File

@ -52,6 +52,8 @@
<item>max_sum_submatrix</item>
<item>find_max_factor_graph_nmplp</item>
<item>find_max_factor_graph_viterbi</item>
<item>find_max_factor_graph_potts</item>
<item>min_cut</item>
</section>
<section>
@ -72,6 +74,8 @@
<item>poly_min_extrap</item>
<item>lagrange_poly_min_extrap</item>
<item>line_search</item>
<item>graph_cut_score</item>
<item>potts_model_score</item>
</section>
</top>
@ -532,6 +536,76 @@ subject to the following constraint:
</component>
<!-- ************************************************************************* -->
<component>
<name>potts_model_score</name>
<file>dlib/graph_cuts.h</file>
<spec_file link="true">dlib/graph_cuts/find_max_factor_graph_potts_abstract.h</spec_file>
<description>
This routine computes the model score for a Potts problem and a
candidate labeling. This score is the quantity maximised
by the <a href="#find_max_factor_graph_potts">find_max_factor_graph_potts</a>
routine.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>graph_cut_score</name>
<file>dlib/graph_cuts.h</file>
<spec_file link="true">dlib/graph_cuts/min_cut_abstract.h</spec_file>
<description>
This routine computes the score for a candidate graph cut. This is the
quantity minimized by the <a href="#min_cut">min_cut</a> algorithm.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>min_cut</name>
<file>dlib/graph_cuts.h</file>
<spec_file link="true">dlib/graph_cuts/min_cut_abstract.h</spec_file>
<description>
This is a function object which can be used to find the min cut
on a graph.
The implementation is based on the method described in the following
paper:
<blockquote>
An Experimental Comparison of Min-Cut/Max-Flow Algorithms for
Energy Minimization in Vision, by Yuri Boykov and Vladimir Kolmogorov,
in PAMI 2004.
</blockquote>
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>find_max_factor_graph_potts</name>
<file>dlib/graph_cuts.h</file>
<spec_file link="true">dlib/graph_cuts/find_max_factor_graph_potts_abstract.h</spec_file>
<description>
This function is a tool for exactly solving the MAP problem in a Potts
model. This type of model is useful when you have a problem which
can be modeled as a bunch of binary decisions on some variables,
but you have some kind of labeling consistency constraint. This
means that there is some penalty for giving certain pairs of variables
different labels. So in addition to trying to figure out how to best
label each variable on its own, you have to worry about making the
labels pairwise consistent in some sense. The find_max_factor_graph_potts()
routine can be used to find the most probable/highest scoring
labeling for this type of model.
<p>The implementation of this routine is based on the <a href="#min_cut">min_cut</a> object.</p>
</description>
</component>
<!-- ************************************************************************* -->
<component>

View File

@ -73,6 +73,16 @@
<term file="optimization.html" name="find_max_trust_region"/>
<term file="optimization.html" name="find_max_factor_graph_nmplp"/>
<term file="optimization.html" name="find_max_factor_graph_viterbi"/>
<term file="optimization.html" name="find_max_factor_graph_potts"/>
<term file="optimization.html" name="min_cut"/>
<term file="optimization.html" name="graph_cut_score"/>
<term file="optimization.html" name="potts_model_score"/>
<term file="dlib/graph_cuts/min_cut_abstract.h.html" name="node_label"/>
<term link="dlib/graph_cuts/min_cut_abstract.h.html#node_label" name="SOURCE_CUT"/>
<term link="dlib/graph_cuts/min_cut_abstract.h.html#node_label" name="SINK_CUT"/>
<term link="dlib/graph_cuts/min_cut_abstract.h.html#node_label" name="FREE_NODE"/>
<term file="optimization.html" name="solve_trust_region_subproblem"/>
<term file="optimization.html" name="find_min_single_variable"/>
<term file="optimization.html" name="find_min_using_approximate_derivatives"/>
@ -170,7 +180,7 @@
<term file="algorithms.html" name="randomly_subsample"/>
<term file="ml.html" name="select_all_distinct_labels"/>
<term file="dlib/svm/multiclass_tools_abstract.h.html#find_missing_pairs" name="find_missing_pairs"/>
<term file="dlib/svm/multiclass_tools_abstract.h.html" name="find_missing_pairs"/>
<term file="ml.html" name="svm_multiclass_linear_trainer"/>
<term link="ml.html#svm_multiclass_linear_trainer" name="Multiclass SVM"/>