mirror of https://github.com/davisking/dlib.git
Added unit tests for the new sequence labeling stuff
This commit is contained in:
parent
d933439a08
commit
4f08da0d47
|
@ -87,6 +87,7 @@ set (tests
|
|||
reference_counter.cpp
|
||||
scan_image.cpp
|
||||
sequence.cpp
|
||||
sequence_labeler.cpp
|
||||
serialize.cpp
|
||||
set.cpp
|
||||
sldf.cpp
|
||||
|
|
|
@ -102,6 +102,7 @@ SRC += read_write_mutex.cpp
|
|||
SRC += reference_counter.cpp
|
||||
SRC += scan_image.cpp
|
||||
SRC += sequence.cpp
|
||||
SRC += sequence_labeler.cpp
|
||||
SRC += serialize.cpp
|
||||
SRC += set.cpp
|
||||
SRC += sldf.cpp
|
||||
|
|
|
@ -0,0 +1,290 @@
|
|||
// Copyright (C) 2011 Davis E. King (davis@dlib.net)
|
||||
// License: Boost Software License See LICENSE.txt for the full license.
|
||||
|
||||
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <cstdlib>
|
||||
#include <ctime>
|
||||
#include "tester.h"
|
||||
#include <dlib/svm_threaded.h>
|
||||
#include <dlib/rand.h>
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
using namespace test;
|
||||
using namespace dlib;
|
||||
using namespace std;
|
||||
|
||||
logger dlog("test.sequence_labeler");
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
const unsigned long num_label_states = 3; // the "hidden" states
|
||||
const unsigned long num_sample_states = 3;
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
class feature_extractor
|
||||
{
|
||||
public:
|
||||
typedef unsigned long sample_type;
|
||||
|
||||
unsigned long num_features() const
|
||||
{
|
||||
return num_label_states*num_label_states + num_label_states*num_sample_states;
|
||||
}
|
||||
|
||||
unsigned long order() const
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
unsigned long num_labels() const
|
||||
{
|
||||
return num_label_states;
|
||||
}
|
||||
|
||||
template <typename feature_setter, typename EXP>
|
||||
void get_features (
|
||||
feature_setter& set_feature,
|
||||
const std::vector<sample_type>& x,
|
||||
const matrix_exp<EXP>& y,
|
||||
unsigned long position
|
||||
) const
|
||||
{
|
||||
if (y.size() > 1)
|
||||
set_feature(y(1)*num_label_states + y(0));
|
||||
|
||||
set_feature(num_label_states*num_label_states +
|
||||
y(0)*num_sample_states + x[position]);
|
||||
}
|
||||
};
|
||||
|
||||
void serialize(const feature_extractor&, std::ostream&) {}
|
||||
void deserialize(feature_extractor&, std::istream&) {}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void sample_hmm (
|
||||
dlib::rand& rnd,
|
||||
const matrix<double>& transition_probabilities,
|
||||
const matrix<double>& emission_probabilities,
|
||||
unsigned long previous_label,
|
||||
unsigned long& next_label,
|
||||
unsigned long& next_sample
|
||||
)
|
||||
/*!
|
||||
requires
|
||||
- previous_label < transition_probabilities.nr()
|
||||
- transition_probabilities.nr() == transition_probabilities.nc()
|
||||
- transition_probabilities.nr() == emission_probabilities.nr()
|
||||
- The rows of transition_probabilities and emission_probabilities must sum to 1.
|
||||
(i.e. sum_cols(transition_probabilities) and sum_cols(emission_probabilities)
|
||||
must evaluate to vectors of all 1s.)
|
||||
ensures
|
||||
- This function randomly samples the HMM defined by transition_probabilities
|
||||
and emission_probabilities assuming that the previous hidden state
|
||||
was previous_label.
|
||||
- The HMM is defined by:
|
||||
- P(next_label |previous_label) == transition_probabilities(previous_label, next_label)
|
||||
- P(next_sample|next_label) == emission_probabilities (next_label, next_sample)
|
||||
- #next_label == the sampled value of the hidden state
|
||||
- #next_sample == the sampled value of the observed state
|
||||
!*/
|
||||
{
|
||||
// sample next_label
|
||||
double p = rnd.get_random_double();
|
||||
for (long c = 0; p >= 0 && c < transition_probabilities.nc(); ++c)
|
||||
{
|
||||
next_label = c;
|
||||
p -= transition_probabilities(previous_label, c);
|
||||
}
|
||||
|
||||
// now sample next_sample
|
||||
p = rnd.get_random_double();
|
||||
for (long c = 0; p >= 0 && c < emission_probabilities.nc(); ++c)
|
||||
{
|
||||
next_sample = c;
|
||||
p -= emission_probabilities(next_label, c);
|
||||
}
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void make_dataset (
|
||||
const matrix<double>& transition_probabilities,
|
||||
const matrix<double>& emission_probabilities,
|
||||
std::vector<std::vector<unsigned long> >& samples,
|
||||
std::vector<std::vector<unsigned long> >& labels,
|
||||
unsigned long dataset_size
|
||||
)
|
||||
/*!
|
||||
requires
|
||||
- transition_probabilities.nr() == transition_probabilities.nc()
|
||||
- transition_probabilities.nr() == emission_probabilities.nr()
|
||||
- The rows of transition_probabilities and emission_probabilities must sum to 1.
|
||||
(i.e. sum_cols(transition_probabilities) and sum_cols(emission_probabilities)
|
||||
must evaluate to vectors of all 1s.)
|
||||
ensures
|
||||
- This function randomly samples a bunch of sequences from the HMM defined by
|
||||
transition_probabilities and emission_probabilities.
|
||||
- The HMM is defined by:
|
||||
- The probability of transitioning from hidden state H1 to H2
|
||||
is given by transition_probabilities(H1,H2).
|
||||
- The probability of a hidden state H producing an observed state
|
||||
O is given by emission_probabilities(H,O).
|
||||
- #samples.size() == labels.size() == dataset_size
|
||||
- for all valid i:
|
||||
- #labels[i] is a randomly sampled sequence of hidden states from the
|
||||
given HMM. #samples[i] is its corresponding randomly sampled sequence
|
||||
of observed states.
|
||||
!*/
|
||||
{
|
||||
samples.clear();
|
||||
labels.clear();
|
||||
|
||||
dlib::rand rnd;
|
||||
|
||||
// now randomly sample some labeled sequences from our Hidden Markov Model
|
||||
for (unsigned long iter = 0; iter < dataset_size; ++iter)
|
||||
{
|
||||
const unsigned long sequence_size = rnd.get_random_32bit_number()%20+3;
|
||||
std::vector<unsigned long> sample(sequence_size);
|
||||
std::vector<unsigned long> label(sequence_size);
|
||||
|
||||
unsigned long previous_label = rnd.get_random_32bit_number()%num_label_states;
|
||||
for (unsigned long i = 0; i < sample.size(); ++i)
|
||||
{
|
||||
unsigned long next_label=0, next_sample=0;
|
||||
sample_hmm(rnd, transition_probabilities, emission_probabilities,
|
||||
previous_label, next_label, next_sample);
|
||||
|
||||
label[i] = next_label;
|
||||
sample[i] = next_sample;
|
||||
|
||||
previous_label = next_label;
|
||||
}
|
||||
|
||||
samples.push_back(sample);
|
||||
labels.push_back(label);
|
||||
}
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
class sequence_labeler_tester : public tester
|
||||
{
|
||||
public:
|
||||
sequence_labeler_tester (
|
||||
) :
|
||||
tester ("test_sequence_labeler",
|
||||
"Runs tests on the sequence labeling code.")
|
||||
{}
|
||||
|
||||
void perform_test (
|
||||
)
|
||||
{
|
||||
matrix<double> transition_probabilities(num_label_states, num_label_states);
|
||||
transition_probabilities = 0.05, 0.90, 0.05,
|
||||
0.05, 0.05, 0.90,
|
||||
0.90, 0.05, 0.05;
|
||||
|
||||
matrix<double> emission_probabilities(num_label_states,num_sample_states);
|
||||
emission_probabilities = 0.5, 0.5, 0.0,
|
||||
0.0, 0.5, 0.5,
|
||||
0.5, 0.0, 0.5;
|
||||
|
||||
print_spinner();
|
||||
|
||||
|
||||
std::vector<std::vector<unsigned long> > samples;
|
||||
std::vector<std::vector<unsigned long> > labels;
|
||||
make_dataset(transition_probabilities,emission_probabilities,
|
||||
samples, labels, 1000);
|
||||
|
||||
dlog << LINFO << "samples.size(): "<< samples.size();
|
||||
|
||||
// print out some of the randomly sampled sequences
|
||||
for (int i = 0; i < 10; ++i)
|
||||
{
|
||||
dlog << LINFO << "hidden states: " << trans(vector_to_matrix(labels[i]));
|
||||
dlog << LINFO << "observed states: " << trans(vector_to_matrix(samples[i]));
|
||||
dlog << LINFO << "******************************";
|
||||
}
|
||||
|
||||
print_spinner();
|
||||
structural_sequence_labeling_trainer<feature_extractor> trainer;
|
||||
trainer.set_c(4);
|
||||
DLIB_TEST(trainer.get_c() == 4);
|
||||
trainer.set_num_threads(4);
|
||||
DLIB_TEST(trainer.get_num_threads() == 4);
|
||||
|
||||
|
||||
|
||||
// Learn to do sequence labeling from the dataset
|
||||
sequence_labeler<feature_extractor> labeler = trainer.train(samples, labels);
|
||||
|
||||
std::vector<unsigned long> predicted_labels = labeler(samples[0]);
|
||||
dlog << LINFO << "true hidden states: "<< trans(vector_to_matrix(labels[0]));
|
||||
dlog << LINFO << "predicted hidden states: "<< trans(vector_to_matrix(predicted_labels));
|
||||
|
||||
DLIB_TEST(vector_to_matrix(labels[0]) == vector_to_matrix(predicted_labels));
|
||||
|
||||
|
||||
print_spinner();
|
||||
|
||||
|
||||
// We can also do cross-validation
|
||||
matrix<double> confusion_matrix;
|
||||
confusion_matrix = cross_validate_sequence_labeler(trainer, samples, labels, 4);
|
||||
dlog << LINFO << "cross-validation: ";
|
||||
dlog << LINFO << confusion_matrix;
|
||||
double accuracy = sum(diag(confusion_matrix))/sum(confusion_matrix);
|
||||
dlog << LINFO << "label accuracy: "<< accuracy;
|
||||
DLIB_TEST(std::abs(accuracy - 0.882) < 0.01);
|
||||
|
||||
print_spinner();
|
||||
|
||||
|
||||
matrix<double,0,1> true_hmm_model_weights = log(join_cols(reshape_to_column_vector(transition_probabilities),
|
||||
reshape_to_column_vector(emission_probabilities)));
|
||||
|
||||
sequence_labeler<feature_extractor> labeler_true(true_hmm_model_weights);
|
||||
|
||||
confusion_matrix = test_sequence_labeler(labeler_true, samples, labels);
|
||||
dlog << LINFO << "True HMM model: ";
|
||||
dlog << LINFO << confusion_matrix;
|
||||
accuracy = sum(diag(confusion_matrix))/sum(confusion_matrix);
|
||||
dlog << LINFO << "label accuracy: "<< accuracy;
|
||||
DLIB_TEST(std::abs(accuracy - 0.882) < 0.01);
|
||||
|
||||
|
||||
|
||||
print_spinner();
|
||||
|
||||
|
||||
|
||||
|
||||
// Finally, the labeler can be serialized to disk just like most dlib objects.
|
||||
ostringstream sout;
|
||||
serialize(labeler, sout);
|
||||
|
||||
sequence_labeler<feature_extractor> labeler2;
|
||||
// recall from disk
|
||||
istringstream sin(sout.str());
|
||||
deserialize(labeler2, sin);
|
||||
confusion_matrix = test_sequence_labeler(labeler2, samples, labels);
|
||||
dlog << LINFO << "deserialized labeler: ";
|
||||
dlog << LINFO << confusion_matrix;
|
||||
accuracy = sum(diag(confusion_matrix))/sum(confusion_matrix);
|
||||
dlog << LINFO << "label accuracy: "<< accuracy;
|
||||
DLIB_TEST(std::abs(accuracy - 0.882) < 0.01);
|
||||
}
|
||||
} a;
|
||||
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue