mirror of https://github.com/davisking/dlib.git
updated docs
This commit is contained in:
parent
b6e274bd1c
commit
41d47e98e0
|
@ -149,6 +149,7 @@
|
|||
<li>Structural SVM tools for solving <a href="ml.html#structural_assignment_trainer">assignment problems</a> </li>
|
||||
<li>Structural SVM tools for <a href="ml.html#structural_object_detection_trainer">object detection</a> in images </li>
|
||||
<li>Structural SVM tools for <a href="ml.html#structural_graph_labeling_trainer">labeling nodes</a> in graphs </li>
|
||||
<li>A large-scale <a href="ml.html#svm_rank_trainer">SVM-Rank</a> implementation</li>
|
||||
<li>An online <a href="ml.html#krls">kernel RLS regression</a> algorithm</li>
|
||||
<li>An online <a href="ml.html#svm_pegasos">SVM classification</a> algorithm</li>
|
||||
<li>An online kernelized <a href="ml.html#kcentroid">centroid estimator</a>/novelty detector and
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
This page documents all the machine learning algorithms present in
|
||||
the library. In particular, there are algorithms for performing
|
||||
classification, regression, clustering, sequence labeling, assignment learning,
|
||||
graph segmentation, object detection, anomaly detection,
|
||||
rank learning, graph segmentation, object detection, anomaly detection,
|
||||
and feature ranking, as well as algorithms for doing more
|
||||
specialized computations.
|
||||
</p>
|
||||
|
@ -116,6 +116,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
|
|||
<item>structural_sequence_labeling_trainer</item>
|
||||
<item>structural_assignment_trainer</item>
|
||||
<item>structural_graph_labeling_trainer</item>
|
||||
<item>svm_rank_trainer</item>
|
||||
</section>
|
||||
<section>
|
||||
<name>Clustering</name>
|
||||
|
@ -158,6 +159,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
|
|||
<item>cross_validate_sequence_labeler</item>
|
||||
<item>cross_validate_assignment_trainer</item>
|
||||
<item>cross_validate_graph_labeling_trainer</item>
|
||||
<item>cross_validate_ranking_trainer</item>
|
||||
<item>test_binary_decision_function</item>
|
||||
<item>test_multiclass_decision_function</item>
|
||||
<item>test_regression_function</item>
|
||||
|
@ -165,6 +167,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
|
|||
<item>test_sequence_labeler</item>
|
||||
<item>test_assignment_function</item>
|
||||
<item>test_graph_labeling_function</item>
|
||||
<item>test_ranking_function</item>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
|
@ -242,6 +245,9 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
|
|||
<item>compute_mean_squared_distance</item>
|
||||
<item>kernel_matrix</item>
|
||||
<item>sparse vectors</item>
|
||||
<item>ranking_pair</item>
|
||||
<item>is_ranking_problem</item>
|
||||
<item>count_ranking_inversions</item>
|
||||
|
||||
|
||||
|
||||
|
@ -337,6 +343,20 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
|
|||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
<name>ranking_pair</name>
|
||||
<file>dlib/svm.h</file>
|
||||
<spec_file link="true">dlib/svm/ranking_tools_abstract.h</spec_file>
|
||||
<description>
|
||||
This object is used to contain a ranking example. Therefore, ranking_pair
|
||||
objects are used to represent training examples for learning-to-rank tasks,
|
||||
such as those used by the <a href="#svm_rank_trainer">svm_rank_trainer</a>.
|
||||
</description>
|
||||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
<name>kernel_matrix</name>
|
||||
<file>dlib/svm.h</file>
|
||||
|
@ -350,6 +370,34 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
|
|||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
<name>is_ranking_problem</name>
|
||||
<file>dlib/svm.h</file>
|
||||
<spec_file link="true">dlib/svm/ranking_tools_abstract.h</spec_file>
|
||||
<description>
|
||||
This function takes a set of training data for a learning-to-rank problem
|
||||
and reports back if it could possibly be a well formed problem.
|
||||
</description>
|
||||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
<name>count_ranking_inversions</name>
|
||||
<file>dlib/svm.h</file>
|
||||
<spec_file link="true">dlib/svm/ranking_tools_abstract.h</spec_file>
|
||||
<description>
|
||||
Given two sets of objects, X and Y, and an ordering relationship defined
|
||||
between their elements, this function counts how many times we see an element
|
||||
in the set Y ordered before an element in the set X. Additionally, this
|
||||
routine executes efficiently in O(n*log(n)) time via the use of quick sort.
|
||||
</description>
|
||||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component checked="true">
|
||||
|
@ -1092,6 +1140,28 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
|
|||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
<name>svm_rank_trainer</name>
|
||||
<file>dlib/svm.h</file>
|
||||
<spec_file link="true">dlib/svm/svm_rank_trainer_abstract.h</spec_file>
|
||||
<description>
|
||||
This object represents a tool for training a ranking support vector machine
|
||||
using linear kernels. In particular, this object is a tool for training
|
||||
the Ranking SVM described in the paper:
|
||||
<blockquote>
|
||||
Optimizing Search Engines using Clickthrough Data by Thorsten Joachims
|
||||
</blockquote>
|
||||
Finally, note that the implementation of this object is done using the
|
||||
<a href="optimization.html#oca">oca</a> optimizer and
|
||||
<a href="#count_ranking_inversions">count_ranking_inversions</a> method.
|
||||
This means that it runs in O(n*log(n)) time, making it suitable for use
|
||||
with large datasets.
|
||||
</description>
|
||||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
|
@ -2229,6 +2299,20 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
|
|||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
<name>cross_validate_ranking_trainer</name>
|
||||
<file>dlib/svm.h</file>
|
||||
<spec_file link="true">dlib/svm/ranking_tools_abstract.h</spec_file>
|
||||
<description>
|
||||
Performs k-fold cross validation on a user supplied ranking trainer object such
|
||||
as the <a href="#svm_rank_trainer">svm_rank_trainer</a>
|
||||
and returns the fraction of ranking pairs ordered correctly.
|
||||
</description>
|
||||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
|
@ -2274,6 +2358,19 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
|
|||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
<name>test_ranking_function</name>
|
||||
<file>dlib/svm.h</file>
|
||||
<spec_file link="true">dlib/svm/ranking_tools_abstract.h</spec_file>
|
||||
<description>
|
||||
Tests a <a href="#decision_function">decision_function</a>'s ability to correctly
|
||||
rank a dataset and returns the resulting ranking accuracy.
|
||||
</description>
|
||||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
|
|
|
@ -250,6 +250,7 @@
|
|||
<term name="max_index_plus_one">
|
||||
<term link="graph_tools.html#max_index_plus_one" name="for graphs"/>
|
||||
<term link="dlib/svm/sparse_vector_abstract.h.html#max_index_plus_one" name="for sparse vectors"/>
|
||||
<term link="dlib/svm/ranking_tools_abstract.h.html#max_index_plus_one" name="for ranking_pairs"/>
|
||||
</term>
|
||||
<term file="dlib/svm/sparse_vector_abstract.h.html" name="sparse_matrix_vector_multiply"/>
|
||||
<term file="dlib/svm/sparse_vector_abstract.h.html" name="add_to"/>
|
||||
|
@ -278,6 +279,12 @@
|
|||
<term file="ml.html" name="svm_c_trainer"/>
|
||||
<term file="ml.html" name="svm_one_class_trainer"/>
|
||||
<term file="ml.html" name="svm_c_linear_trainer"/>
|
||||
<term file="ml.html" name="svm_rank_trainer"/>
|
||||
<term file="ml.html" name="ranking_pair"/>
|
||||
<term file="ml.html" name="is_ranking_problem"/>
|
||||
<term file="ml.html" name="count_ranking_inversions"/>
|
||||
<term file="ml.html" name="test_ranking_function"/>
|
||||
<term file="ml.html" name="cross_validate_ranking_trainer"/>
|
||||
<term file="ml.html" name="svm_c_ekm_trainer"/>
|
||||
<term file="ml.html" name="rvm_trainer"/>
|
||||
<term file="ml.html" name="krr_trainer"/>
|
||||
|
|
Loading…
Reference in New Issue