mirror of https://github.com/davisking/dlib.git
merged
This commit is contained in:
commit
3156a5f440
|
@ -0,0 +1,72 @@
|
|||
#!/usr/bin/python
|
||||
# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
||||
#
|
||||
# This example shows how to run a CNN based face detector using dlib. The
|
||||
# example loads a pretrained model and uses it to find faces in images. The
|
||||
# CNN model is much more accurate than the HOG based model shown in the
|
||||
# face_detector.py example, but takes much more computational power to
|
||||
# run, and is meant to be executed on a GPU to attain reasonable speed.
|
||||
#
|
||||
# You can download the pre-trained model from:
|
||||
# http://dlib.net/files/mmod_human_face_detector.dat.bz2
|
||||
#
|
||||
# The examples/faces folder contains some jpg images of people. You can run
|
||||
# this program on them and see the detections by executing the
|
||||
# following command:
|
||||
# ./cnn_face_detector.py mmod_human_face_detector.dat ../examples/faces/*.jpg
|
||||
#
|
||||
#
|
||||
# COMPILING/INSTALLING THE DLIB PYTHON INTERFACE
|
||||
# You can install dlib using the command:
|
||||
# pip install dlib
|
||||
#
|
||||
# Alternatively, if you want to compile dlib yourself then go into the dlib
|
||||
# root folder and run:
|
||||
# python setup.py install
|
||||
# or
|
||||
# python setup.py install --yes USE_AVX_INSTRUCTIONS --yes DLIB_USE_CUDA
|
||||
# if you have a CPU that supports AVX instructions, you have an Nvidia GPU
|
||||
# and you have CUDA installed since this makes things run *much* faster.
|
||||
#
|
||||
# Compiling dlib should work on any operating system so long as you have
|
||||
# CMake and boost-python installed. On Ubuntu, this can be done easily by
|
||||
# running the command:
|
||||
# sudo apt-get install libboost-python-dev cmake
|
||||
#
|
||||
# Also note that this example requires scikit-image which can be installed
|
||||
# via the command:
|
||||
# pip install scikit-image
|
||||
# Or downloaded from http://scikit-image.org/download.html.
|
||||
|
||||
import sys
|
||||
|
||||
import dlib
|
||||
from skimage import io
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
print(
|
||||
"Call this program like this:\n"
|
||||
" ./cnn_face_detector.py mmod_human_face_detector.dat ../examples/faces/*.jpg\n"
|
||||
"You can get the mmod_human_face_detector.dat file from:\n"
|
||||
" http://dlib.net/files/mmod_human_face_detector.dat.bz2")
|
||||
exit()
|
||||
|
||||
cnn_face_detection_model = dlib.cnn_face_detection_model_v1(sys.argv[1])
|
||||
win = dlib.image_window()
|
||||
|
||||
for f in sys.argv[2:]:
|
||||
print("Processing file: {}".format(f))
|
||||
img = io.imread(f)
|
||||
# The 1 in the second argument indicates that we should upsample the image
|
||||
# 1 time. This will make everything bigger and allow us to detect more
|
||||
# faces.
|
||||
dets = cnn_face_detection_model.cnn_face_detector(img, 1)
|
||||
print("Number of faces detected: {}".format(len(dets)))
|
||||
for i, d in enumerate(dets):
|
||||
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
|
||||
i, d.left(), d.top(), d.right(), d.bottom()))
|
||||
|
||||
win.clear_overlay()
|
||||
win.set_image(img)
|
||||
win.add_overlay(dets)
|
||||
dlib.hit_enter_to_continue()
|
|
@ -26,6 +26,7 @@ set(python_srcs
|
|||
src/shape_predictor.cpp
|
||||
src/correlation_tracker.cpp
|
||||
src/face_recognition.cpp
|
||||
src/cnn_face_detector.cpp
|
||||
)
|
||||
|
||||
# Only add the GUI module if requested
|
||||
|
@ -35,6 +36,6 @@ endif(NOT ${DLIB_NO_GUI_SUPPORT})
|
|||
|
||||
add_python_module(dlib ${python_srcs})
|
||||
|
||||
# When you run "make install" we will copy the compiled dlib.so (or dlib.pyd)
|
||||
# When you run "make install" we will copy the compiled dlib.so (or dlib.pyd)
|
||||
# library file to the python_examples folder.
|
||||
install_dlib_to(../../python_examples)
|
||||
|
|
|
@ -0,0 +1,95 @@
|
|||
// Copyright (C) 2017 Davis E. King (davis@dlib.net)
|
||||
// License: Boost Software License See LICENSE.txt for the full license.
|
||||
|
||||
#include <dlib/python.h>
|
||||
#include <boost/shared_ptr.hpp>
|
||||
#include <dlib/matrix.h>
|
||||
#include <boost/python/slice.hpp>
|
||||
#include <dlib/geometry/vector.h>
|
||||
#include <dlib/dnn.h>
|
||||
#include <dlib/image_transforms.h>
|
||||
#include "indexing.h"
|
||||
|
||||
using namespace dlib;
|
||||
using namespace std;
|
||||
using namespace boost::python;
|
||||
|
||||
typedef matrix<double,0,1> cv;
|
||||
|
||||
|
||||
class cnn_face_detection_model_v1
|
||||
{
|
||||
|
||||
public:
|
||||
|
||||
cnn_face_detection_model_v1(const std::string& model_filename)
|
||||
{
|
||||
deserialize(model_filename) >> net;
|
||||
}
|
||||
|
||||
std::vector<rectangle> cnn_face_detector (
|
||||
object pyimage,
|
||||
const int upsample_num_times
|
||||
)
|
||||
{
|
||||
pyramid_down<2> pyr;
|
||||
std::vector<rectangle> rects;
|
||||
|
||||
// Copy the data into dlib based objects
|
||||
matrix<rgb_pixel> image;
|
||||
if (is_gray_python_image(pyimage))
|
||||
assign_image(image, numpy_gray_image(pyimage));
|
||||
else if (is_rgb_python_image(pyimage))
|
||||
assign_image(image, numpy_rgb_image(pyimage));
|
||||
else
|
||||
throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
|
||||
|
||||
// Upsampling the image will allow us to detect smaller faces but will cause the
|
||||
// program to use more RAM and run longer.
|
||||
unsigned int levels = upsample_num_times;
|
||||
while (levels > 0)
|
||||
{
|
||||
levels--;
|
||||
pyramid_up(image, pyr);
|
||||
}
|
||||
|
||||
auto dets = net(image);
|
||||
|
||||
// Scale the detection locations back to the original image size
|
||||
// if the image was upscaled.
|
||||
for (auto&& d : dets) {
|
||||
d.rect = pyr.rect_down(d.rect, upsample_num_times);
|
||||
rects.push_back(d.rect);
|
||||
}
|
||||
|
||||
return rects;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
template <long num_filters, typename SUBNET> using con5d = con<num_filters,5,5,2,2,SUBNET>;
|
||||
template <long num_filters, typename SUBNET> using con5 = con<num_filters,5,5,1,1,SUBNET>;
|
||||
|
||||
template <typename SUBNET> using downsampler = relu<affine<con5d<32, relu<affine<con5d<32, relu<affine<con5d<16,SUBNET>>>>>>>>>;
|
||||
template <typename SUBNET> using rcon5 = relu<affine<con5<45,SUBNET>>>;
|
||||
|
||||
using net_type = loss_mmod<con<1,9,9,1,1,rcon5<rcon5<rcon5<downsampler<input_rgb_image_pyramid<pyramid_down<6>>>>>>>>;
|
||||
|
||||
net_type net;
|
||||
};
|
||||
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void bind_cnn_face_detection()
|
||||
{
|
||||
using boost::python::arg;
|
||||
{
|
||||
class_<cnn_face_detection_model_v1>("cnn_face_detection_model_v1", "This object detects human faces in an image. The constructor loads the face detection model from a file. You can download a pre-trained model from http://dlib.net/files/mmod_human_face_detector.dat.bz2.", init<std::string>())
|
||||
.def("cnn_face_detector", &cnn_face_detection_model_v1::cnn_face_detector, (arg("img"), arg("upsample_num_times")=0),
|
||||
"Find faces in an image using a deep learning model.\n\
|
||||
- Upsamples the image upsample_num_times before running the face \n\
|
||||
detector."
|
||||
);
|
||||
}
|
||||
}
|
|
@ -19,6 +19,7 @@ void bind_object_detection();
|
|||
void bind_shape_predictors();
|
||||
void bind_correlation_tracker();
|
||||
void bind_face_recognition();
|
||||
void bind_cnn_face_detection();
|
||||
|
||||
#ifndef DLIB_NO_GUI_SUPPORT
|
||||
void bind_gui();
|
||||
|
@ -51,8 +52,8 @@ BOOST_PYTHON_MODULE(dlib)
|
|||
bind_shape_predictors();
|
||||
bind_correlation_tracker();
|
||||
bind_face_recognition();
|
||||
bind_cnn_face_detection();
|
||||
#ifndef DLIB_NO_GUI_SUPPORT
|
||||
bind_gui();
|
||||
#endif
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue