diff --git a/dlib/dnn/core.h b/dlib/dnn/core.h index f5be4ac58..d68dd576b 100644 --- a/dlib/dnn/core.h +++ b/dlib/dnn/core.h @@ -226,10 +226,6 @@ namespace dlib input_iterator ibegin, input_iterator iend ) - /*! - ensures - - runs [ibegin,iend) through the network and returns the results - !*/ { to_tensor(ibegin,iend,temp_tensor); return forward(temp_tensor); @@ -237,10 +233,6 @@ namespace dlib const tensor& operator() (const input_type& x) - /*! - ensures - - runs a single x through the network and returns the output. - !*/ { return (*this)(&x, &x+1); } @@ -273,13 +265,6 @@ namespace dlib template void update(const tensor& x, sstack& solvers) - /*! - requires - - forward(x) was called to forward propagate x though the network. - - x.num_samples() == get_gradient_input().num_samples() - - get_gradient_input() == the gradient of the network with respect - to some loss. - !*/ { dimpl::subnet_wrapper wsub(subnetwork); params_grad.copy_size(details.get_layer_params()); @@ -415,10 +400,6 @@ namespace dlib input_iterator ibegin, input_iterator iend ) - /*! - ensures - - runs [ibegin,iend) through the network and returns the results - !*/ { to_tensor(ibegin,iend,temp_tensor); return forward(temp_tensor); @@ -426,19 +407,11 @@ namespace dlib const tensor& operator() (const input_type& x) - /*! - ensures - - runs a single x through the network and returns the output. - !*/ { return (*this)(&x, &x+1); } const tensor& forward (const tensor& x) - /*! - requires - - x.num_samples() is a multiple of sample_expansion_factor. - !*/ { DLIB_CASSERT(x.num_samples()%sample_expansion_factor == 0,""); subnet_wrapper wsub(x, grad_final_ignored); @@ -467,12 +440,6 @@ namespace dlib template void update(const tensor& x, sstack& solvers) - /*! - requires - - x.num_samples() is a multiple of sample_expansion_factor. - - forward(x) was called to forward propagate x though the network. - - x.num_samples() == get_gradient_input().num_samples() - !*/ { subnet_wrapper wsub(x, grad_final_ignored); params_grad.copy_size(details.get_layer_params()); @@ -843,13 +810,6 @@ namespace dlib input_iterator iend, output_iterator obegin ) - /*! - requires - - obegin == iterator pointing to the start of a range of distance(ibegin,iend) - elements. - ensures - - runs [ibegin,iend) through the network and writes the output to the range at obegin. - !*/ { sub.to_tensor(ibegin,iend,temp_tensor); sub.forward(temp_tensor); @@ -858,10 +818,6 @@ namespace dlib const label_type& operator() (const input_type& x) - /*! - ensures - - runs a single x through the network and returns the output. - !*/ { (*this)(&x, &x+1, &temp_label); return temp_label; @@ -931,17 +887,6 @@ namespace dlib void clean ( ) - /*! - ensures - - Causes the network to forget about everything but its parameters. - That is, for each layer we will have: - - get_output().num_samples() == 0 - - get_gradient_input().num_samples() == 0 - However, running new input data though this network will still have the - same output it would have had regardless of any calls to clean(). - Finally, the purpose of clean() is to compact the network object prior to - saving it to disk so that it takes up less space and the IO is quicker. - !*/ { temp_tensor.clear(); sub.clear(); @@ -1059,11 +1004,6 @@ namespace dlib template class TAG_TYPE, typename SUBNET> class add_skip_layer { - /*! - WHAT THIS OBJECT REPRESENTS - This object draws its inputs from layer(SUBNET()) - and performs the identity transform. - !*/ public: typedef SUBNET subnet_type; typedef typename subnet_type::input_type input_type; @@ -1464,10 +1404,6 @@ namespace dlib const std::vector& data, const std::vector& labels ) - /*! - requires - - data.size() == labels.size() - !*/ { DLIB_CASSERT(data.size() == labels.size(), ""); @@ -1490,10 +1426,6 @@ namespace dlib const net_type& train ( const std::vector& data ) - /*! - ensures - - trains an auto-encoder - !*/ { const bool has_unsupervised_loss = std::is_same::value; static_assert(has_unsupervised_loss,