removed cruft

This commit is contained in:
Davis King 2015-09-28 18:05:59 -04:00
parent e179f4104c
commit 2cd9128853
1 changed files with 0 additions and 68 deletions

View File

@ -226,10 +226,6 @@ namespace dlib
input_iterator ibegin,
input_iterator iend
)
/*!
ensures
- runs [ibegin,iend) through the network and returns the results
!*/
{
to_tensor(ibegin,iend,temp_tensor);
return forward(temp_tensor);
@ -237,10 +233,6 @@ namespace dlib
const tensor& operator() (const input_type& x)
/*!
ensures
- runs a single x through the network and returns the output.
!*/
{
return (*this)(&x, &x+1);
}
@ -273,13 +265,6 @@ namespace dlib
template <typename solver_type>
void update(const tensor& x, sstack<solver_type,num_layers>& solvers)
/*!
requires
- forward(x) was called to forward propagate x though the network.
- x.num_samples() == get_gradient_input().num_samples()
- get_gradient_input() == the gradient of the network with respect
to some loss.
!*/
{
dimpl::subnet_wrapper<subnet_type> wsub(subnetwork);
params_grad.copy_size(details.get_layer_params());
@ -415,10 +400,6 @@ namespace dlib
input_iterator ibegin,
input_iterator iend
)
/*!
ensures
- runs [ibegin,iend) through the network and returns the results
!*/
{
to_tensor(ibegin,iend,temp_tensor);
return forward(temp_tensor);
@ -426,19 +407,11 @@ namespace dlib
const tensor& operator() (const input_type& x)
/*!
ensures
- runs a single x through the network and returns the output.
!*/
{
return (*this)(&x, &x+1);
}
const tensor& forward (const tensor& x)
/*!
requires
- x.num_samples() is a multiple of sample_expansion_factor.
!*/
{
DLIB_CASSERT(x.num_samples()%sample_expansion_factor == 0,"");
subnet_wrapper wsub(x, grad_final_ignored);
@ -467,12 +440,6 @@ namespace dlib
template <typename solver_type>
void update(const tensor& x, sstack<solver_type,num_layers>& solvers)
/*!
requires
- x.num_samples() is a multiple of sample_expansion_factor.
- forward(x) was called to forward propagate x though the network.
- x.num_samples() == get_gradient_input().num_samples()
!*/
{
subnet_wrapper wsub(x, grad_final_ignored);
params_grad.copy_size(details.get_layer_params());
@ -843,13 +810,6 @@ namespace dlib
input_iterator iend,
output_iterator obegin
)
/*!
requires
- obegin == iterator pointing to the start of a range of distance(ibegin,iend)
elements.
ensures
- runs [ibegin,iend) through the network and writes the output to the range at obegin.
!*/
{
sub.to_tensor(ibegin,iend,temp_tensor);
sub.forward(temp_tensor);
@ -858,10 +818,6 @@ namespace dlib
const label_type& operator() (const input_type& x)
/*!
ensures
- runs a single x through the network and returns the output.
!*/
{
(*this)(&x, &x+1, &temp_label);
return temp_label;
@ -931,17 +887,6 @@ namespace dlib
void clean (
)
/*!
ensures
- Causes the network to forget about everything but its parameters.
That is, for each layer we will have:
- get_output().num_samples() == 0
- get_gradient_input().num_samples() == 0
However, running new input data though this network will still have the
same output it would have had regardless of any calls to clean().
Finally, the purpose of clean() is to compact the network object prior to
saving it to disk so that it takes up less space and the IO is quicker.
!*/
{
temp_tensor.clear();
sub.clear();
@ -1059,11 +1004,6 @@ namespace dlib
template <template<typename> class TAG_TYPE, typename SUBNET>
class add_skip_layer
{
/*!
WHAT THIS OBJECT REPRESENTS
This object draws its inputs from layer<TAG_TYPE>(SUBNET())
and performs the identity transform.
!*/
public:
typedef SUBNET subnet_type;
typedef typename subnet_type::input_type input_type;
@ -1464,10 +1404,6 @@ namespace dlib
const std::vector<input_type>& data,
const std::vector<label_type>& labels
)
/*!
requires
- data.size() == labels.size()
!*/
{
DLIB_CASSERT(data.size() == labels.size(), "");
@ -1490,10 +1426,6 @@ namespace dlib
const net_type& train (
const std::vector<input_type>& data
)
/*!
ensures
- trains an auto-encoder
!*/
{
const bool has_unsupervised_loss = std::is_same<no_label_type, label_type>::value;
static_assert(has_unsupervised_loss,