mirror of https://github.com/davisking/dlib.git
Removed unnecessary restrictions on the rbf_network_trainer
object. --HG-- extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%402398
This commit is contained in:
parent
e32aa6cf90
commit
29b08623e8
|
@ -108,14 +108,13 @@ namespace dlib
|
|||
typedef typename decision_function<kernel_type>::scalar_vector_type scalar_vector_type;
|
||||
|
||||
// make sure requires clause is not broken
|
||||
DLIB_ASSERT(is_binary_classification_problem(x,y) == true,
|
||||
DLIB_ASSERT(x.nr() > 1 && x.nr() == y.nr() && x.nc() == 1 && y.nc() == 1,
|
||||
"\tdecision_function rbf_network_trainer::train(x,y)"
|
||||
<< "\n\t invalid inputs were given to this function"
|
||||
<< "\n\t x.nr(): " << x.nr()
|
||||
<< "\n\t y.nr(): " << y.nr()
|
||||
<< "\n\t x.nc(): " << x.nc()
|
||||
<< "\n\t y.nc(): " << y.nc()
|
||||
<< "\n\t is_binary_classification_problem(x,y): " << ((is_binary_classification_problem(x,y))? "true":"false")
|
||||
);
|
||||
|
||||
// first run all the sampes through a kcentroid object to find the rbf centers
|
||||
|
|
|
@ -27,8 +27,7 @@ namespace dlib
|
|||
- get_tolerance() == 0.01
|
||||
|
||||
WHAT THIS OBJECT REPRESENTS
|
||||
This object implements a trainer for radial basis function network for
|
||||
solving binary classification problems.
|
||||
This object implements a trainer for an radial basis function network.
|
||||
|
||||
The implementation of this algorithm follows the normal RBF training
|
||||
process. For more details see the code or the Wikipedia article
|
||||
|
@ -94,7 +93,13 @@ namespace dlib
|
|||
) const
|
||||
/*!
|
||||
requires
|
||||
- is_binary_classification_problem(x,y) == true
|
||||
- in_sample_vector_type == a matrix or something convertable to a matrix
|
||||
via vector_to_matrix()
|
||||
- in_scalar_vector_type == a matrix or something convertable to a matrix
|
||||
via vector_to_matrix()
|
||||
- x.nr() > 1
|
||||
- x.nr() == y.nr() && x.nc() == 1 && y.nc() == 1
|
||||
(i.e. x and y are both column vectors of the same length)
|
||||
ensures
|
||||
- trains a RBF network given the training samples in x and
|
||||
labels in y.
|
||||
|
|
Loading…
Reference in New Issue