From 278c4bcf17a39c85b310b4286363f1096ca0620c Mon Sep 17 00:00:00 2001 From: Davis King Date: Wed, 30 Jul 2008 22:26:20 +0000 Subject: [PATCH] updated the docs --HG-- extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%402452 --- docs/docs/algorithms.xml | 8 ++++---- docs/docs/index.xml | 2 +- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/docs/docs/algorithms.xml b/docs/docs/algorithms.xml index d5e0029c6..640a11fff 100644 --- a/docs/docs/algorithms.xml +++ b/docs/docs/algorithms.xml @@ -328,7 +328,7 @@ dlib/optimization.h dlib/optimization/optimization_abstract.h - Performs an unconstrained minimization of the function f() using the + Performs an unconstrained minimization of the potentially nonlinear function f() using the BFGS quasi newton method. @@ -341,7 +341,7 @@ dlib/optimization.h dlib/optimization/optimization_abstract.h - Performs an unconstrained minimization of the function f() using a + Performs an unconstrained minimization of the potentially nonlinear function f() using a conjugate gradient method. @@ -354,7 +354,7 @@ dlib/optimization.h dlib/optimization/optimization_abstract.h - Performs an unconstrained minimization of the function f() using the + Performs an unconstrained minimization of the potentially nonlinear function f() using the BFGS quasi newton method. This version doesn't take a gradient function of f() but instead numerically approximates the gradient. @@ -368,7 +368,7 @@ dlib/optimization.h dlib/optimization/optimization_abstract.h - Performs an unconstrained minimization of the function f() using a + Performs an unconstrained minimization of the potentially nonlinear function f() using a conjugate gradient method. This version doesn't take a gradient function of f() but instead numerically approximates the gradient. diff --git a/docs/docs/index.xml b/docs/docs/index.xml index 910462567..7bc9279be 100644 --- a/docs/docs/index.xml +++ b/docs/docs/index.xml @@ -106,7 +106,7 @@ singular value decomposition, transpose, trig functions, etc... -
  • Unconstrained optimization algorithms such as +
  • Unconstrained non-linear optimization algorithms such as conjugate gradient and quasi newton techniques
  • A big integer object
  • A random number object