add ability to return detection confidences and weight index to python

This commit is contained in:
Jack Culpepper 2015-03-11 23:23:19 -07:00
parent 154f435427
commit 154f9e4931
2 changed files with 93 additions and 14 deletions

View File

@ -383,6 +383,18 @@ ensures \n\
ensures \n\
- This function runs the object detector on the input image and returns \n\
a list of detections.")
.def("run", &type::run_detector3, (arg("image"), arg("upsample_num_times")),
"requires \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
image. \n\
- upsample_num_times >= 0 \n\
ensures \n\
- This function runs the object detector on the input image and returns \n\
a tuple of (list of detections, list of scores, list of weight_indices). \n\
- Upsamples the image upsample_num_times before running the basic \n\
detector. If you don't know how many times you want to upsample then \n\
don't provide a value for upsample_num_times and an appropriate \n\
default will be used.")
.def("save", save_simple_object_detector_py, (arg("detector_output_filename")), "Save a simple_object_detector to the provided path.")
.def_pickle(serialize_pickle<type>());
}

View File

@ -13,20 +13,47 @@ namespace dlib
{
typedef object_detector<scan_fhog_pyramid<pyramid_down<6> > > simple_object_detector;
inline void split_rect_detections (
std::vector<rect_detection>& rect_detections,
std::vector<rectangle>& rectangles,
std::vector<double>& detection_confidences,
std::vector<int>& weight_indices
)
{
rectangles.clear();
detection_confidences.clear();
weight_indices.clear();
for (unsigned long i = 0; i < rect_detections.size(); ++i)
{
rectangles.push_back(rect_detections[i].rect);
detection_confidences.push_back(rect_detections[i].detection_confidence);
weight_indices.push_back(rect_detections[i].weight_index);
}
}
inline std::vector<dlib::rectangle> run_detector_with_upscale (
dlib::simple_object_detector& detector,
boost::python::object img,
const unsigned int upsampling_amount
const unsigned int upsampling_amount,
std::vector<double>& detection_confidences,
std::vector<int>& weight_indices
)
{
pyramid_down<2> pyr;
std::vector<rectangle> rectangles;
std::vector<rect_detection> rect_detections;
if (is_gray_python_image(img))
{
array2d<unsigned char> temp;
if (upsampling_amount == 0)
{
return detector(numpy_gray_image(img));
detector(numpy_gray_image(img), rect_detections, 0.0);
split_rect_detections(rect_detections, rectangles,
detection_confidences, weight_indices);
return rectangles;
}
else
{
@ -38,10 +65,14 @@ namespace dlib
pyramid_up(temp);
}
std::vector<rectangle> res = detector(temp);
for (unsigned long i = 0; i < res.size(); ++i)
res[i] = pyr.rect_down(res[i], upsampling_amount);
return res;
detector(temp, rect_detections, 0.0);
for (unsigned long i = 0; i < rect_detections.size(); ++i)
rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
upsampling_amount);
split_rect_detections(rect_detections, rectangles,
detection_confidences, weight_indices);
return rectangles;
}
}
else if (is_rgb_python_image(img))
@ -49,7 +80,10 @@ namespace dlib
array2d<rgb_pixel> temp;
if (upsampling_amount == 0)
{
return detector(numpy_rgb_image(img));
detector(numpy_rgb_image(img), rect_detections, 0.0);
split_rect_detections(rect_detections, rectangles,
detection_confidences, weight_indices);
return rectangles;
}
else
{
@ -61,10 +95,14 @@ namespace dlib
pyramid_up(temp);
}
std::vector<rectangle> res = detector(temp);
for (unsigned long i = 0; i < res.size(); ++i)
res[i] = pyr.rect_down(res[i], upsampling_amount);
return res;
detector(temp, rect_detections, 0.0);
for (unsigned long i = 0; i < rect_detections.size(); ++i)
rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
upsampling_amount);
split_rect_detections(rect_detections, rectangles,
detection_confidences, weight_indices);
return rectangles;
}
}
else
@ -82,11 +120,40 @@ namespace dlib
simple_object_detector_py(simple_object_detector& _detector, unsigned int _upsampling_amount) :
detector(_detector), upsampling_amount(_upsampling_amount) {}
std::vector<dlib::rectangle> run_detector1 (boost::python::object img, const unsigned int upsampling_amount_)
{ return run_detector_with_upscale(detector, img, upsampling_amount_); }
std::vector<dlib::rectangle> run_detector1 (boost::python::object img,
const unsigned int upsampling_amount_)
{
std::vector<double> detection_confidences;
std::vector<int> weight_indices;
return run_detector_with_upscale(detector, img, upsampling_amount_,
detection_confidences, weight_indices);
}
std::vector<dlib::rectangle> run_detector2 (boost::python::object img)
{ return run_detector_with_upscale(detector, img, upsampling_amount); }
{
std::vector<double> detection_confidences;
std::vector<int> weight_indices;
return run_detector_with_upscale(detector, img, upsampling_amount,
detection_confidences, weight_indices);
}
boost::python::tuple run_detector3 (boost::python::object img,
const unsigned int upsampling_amount_)
{
boost::python::tuple t;
std::vector<double> detection_confidences;
std::vector<int> weight_indices;
std::vector<rectangle> rectangles;
rectangles = run_detector_with_upscale(detector, img, upsampling_amount,
detection_confidences, weight_indices);
return boost::python::make_tuple(rectangles,
detection_confidences, weight_indices);
}
};
}