mirror of https://github.com/davisking/dlib.git
add ability to return detection confidences and weight index to python
This commit is contained in:
parent
154f435427
commit
154f9e4931
|
@ -383,6 +383,18 @@ ensures \n\
|
|||
ensures \n\
|
||||
- This function runs the object detector on the input image and returns \n\
|
||||
a list of detections.")
|
||||
.def("run", &type::run_detector3, (arg("image"), arg("upsample_num_times")),
|
||||
"requires \n\
|
||||
- image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
|
||||
image. \n\
|
||||
- upsample_num_times >= 0 \n\
|
||||
ensures \n\
|
||||
- This function runs the object detector on the input image and returns \n\
|
||||
a tuple of (list of detections, list of scores, list of weight_indices). \n\
|
||||
- Upsamples the image upsample_num_times before running the basic \n\
|
||||
detector. If you don't know how many times you want to upsample then \n\
|
||||
don't provide a value for upsample_num_times and an appropriate \n\
|
||||
default will be used.")
|
||||
.def("save", save_simple_object_detector_py, (arg("detector_output_filename")), "Save a simple_object_detector to the provided path.")
|
||||
.def_pickle(serialize_pickle<type>());
|
||||
}
|
||||
|
|
|
@ -13,20 +13,47 @@ namespace dlib
|
|||
{
|
||||
typedef object_detector<scan_fhog_pyramid<pyramid_down<6> > > simple_object_detector;
|
||||
|
||||
inline void split_rect_detections (
|
||||
std::vector<rect_detection>& rect_detections,
|
||||
std::vector<rectangle>& rectangles,
|
||||
std::vector<double>& detection_confidences,
|
||||
std::vector<int>& weight_indices
|
||||
)
|
||||
{
|
||||
rectangles.clear();
|
||||
detection_confidences.clear();
|
||||
weight_indices.clear();
|
||||
|
||||
for (unsigned long i = 0; i < rect_detections.size(); ++i)
|
||||
{
|
||||
rectangles.push_back(rect_detections[i].rect);
|
||||
detection_confidences.push_back(rect_detections[i].detection_confidence);
|
||||
weight_indices.push_back(rect_detections[i].weight_index);
|
||||
}
|
||||
}
|
||||
|
||||
inline std::vector<dlib::rectangle> run_detector_with_upscale (
|
||||
dlib::simple_object_detector& detector,
|
||||
boost::python::object img,
|
||||
const unsigned int upsampling_amount
|
||||
const unsigned int upsampling_amount,
|
||||
std::vector<double>& detection_confidences,
|
||||
std::vector<int>& weight_indices
|
||||
)
|
||||
{
|
||||
pyramid_down<2> pyr;
|
||||
|
||||
std::vector<rectangle> rectangles;
|
||||
std::vector<rect_detection> rect_detections;
|
||||
|
||||
if (is_gray_python_image(img))
|
||||
{
|
||||
array2d<unsigned char> temp;
|
||||
if (upsampling_amount == 0)
|
||||
{
|
||||
return detector(numpy_gray_image(img));
|
||||
detector(numpy_gray_image(img), rect_detections, 0.0);
|
||||
split_rect_detections(rect_detections, rectangles,
|
||||
detection_confidences, weight_indices);
|
||||
return rectangles;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -38,10 +65,14 @@ namespace dlib
|
|||
pyramid_up(temp);
|
||||
}
|
||||
|
||||
std::vector<rectangle> res = detector(temp);
|
||||
for (unsigned long i = 0; i < res.size(); ++i)
|
||||
res[i] = pyr.rect_down(res[i], upsampling_amount);
|
||||
return res;
|
||||
detector(temp, rect_detections, 0.0);
|
||||
for (unsigned long i = 0; i < rect_detections.size(); ++i)
|
||||
rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
|
||||
upsampling_amount);
|
||||
split_rect_detections(rect_detections, rectangles,
|
||||
detection_confidences, weight_indices);
|
||||
|
||||
return rectangles;
|
||||
}
|
||||
}
|
||||
else if (is_rgb_python_image(img))
|
||||
|
@ -49,7 +80,10 @@ namespace dlib
|
|||
array2d<rgb_pixel> temp;
|
||||
if (upsampling_amount == 0)
|
||||
{
|
||||
return detector(numpy_rgb_image(img));
|
||||
detector(numpy_rgb_image(img), rect_detections, 0.0);
|
||||
split_rect_detections(rect_detections, rectangles,
|
||||
detection_confidences, weight_indices);
|
||||
return rectangles;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -61,10 +95,14 @@ namespace dlib
|
|||
pyramid_up(temp);
|
||||
}
|
||||
|
||||
std::vector<rectangle> res = detector(temp);
|
||||
for (unsigned long i = 0; i < res.size(); ++i)
|
||||
res[i] = pyr.rect_down(res[i], upsampling_amount);
|
||||
return res;
|
||||
detector(temp, rect_detections, 0.0);
|
||||
for (unsigned long i = 0; i < rect_detections.size(); ++i)
|
||||
rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
|
||||
upsampling_amount);
|
||||
split_rect_detections(rect_detections, rectangles,
|
||||
detection_confidences, weight_indices);
|
||||
|
||||
return rectangles;
|
||||
}
|
||||
}
|
||||
else
|
||||
|
@ -82,11 +120,40 @@ namespace dlib
|
|||
simple_object_detector_py(simple_object_detector& _detector, unsigned int _upsampling_amount) :
|
||||
detector(_detector), upsampling_amount(_upsampling_amount) {}
|
||||
|
||||
std::vector<dlib::rectangle> run_detector1 (boost::python::object img, const unsigned int upsampling_amount_)
|
||||
{ return run_detector_with_upscale(detector, img, upsampling_amount_); }
|
||||
std::vector<dlib::rectangle> run_detector1 (boost::python::object img,
|
||||
const unsigned int upsampling_amount_)
|
||||
{
|
||||
std::vector<double> detection_confidences;
|
||||
std::vector<int> weight_indices;
|
||||
|
||||
return run_detector_with_upscale(detector, img, upsampling_amount_,
|
||||
detection_confidences, weight_indices);
|
||||
}
|
||||
|
||||
std::vector<dlib::rectangle> run_detector2 (boost::python::object img)
|
||||
{ return run_detector_with_upscale(detector, img, upsampling_amount); }
|
||||
{
|
||||
std::vector<double> detection_confidences;
|
||||
std::vector<int> weight_indices;
|
||||
return run_detector_with_upscale(detector, img, upsampling_amount,
|
||||
detection_confidences, weight_indices);
|
||||
}
|
||||
|
||||
|
||||
boost::python::tuple run_detector3 (boost::python::object img,
|
||||
const unsigned int upsampling_amount_)
|
||||
{
|
||||
boost::python::tuple t;
|
||||
|
||||
std::vector<double> detection_confidences;
|
||||
std::vector<int> weight_indices;
|
||||
std::vector<rectangle> rectangles;
|
||||
|
||||
rectangles = run_detector_with_upscale(detector, img, upsampling_amount,
|
||||
detection_confidences, weight_indices);
|
||||
|
||||
return boost::python::make_tuple(rectangles,
|
||||
detection_confidences, weight_indices);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue