mirror of https://github.com/davisking/dlib.git
Added initial version of structural svm python example program.
This commit is contained in:
parent
a0fe7efc8f
commit
097b4eab22
|
@ -0,0 +1,86 @@
|
|||
#!/usr/bin/python
|
||||
# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
||||
#
|
||||
#
|
||||
#
|
||||
# COMPILING THE DLIB PYTHON INTERFACE
|
||||
# Dlib comes with a compiled python interface for python 2.7 on MS Windows. If
|
||||
# you are using another python version or operating system then you need to
|
||||
# compile the dlib python interface before you can use this file. To do this,
|
||||
# run compile_dlib_python_module.bat. This should work on any operating system
|
||||
# so long as you have CMake and boost-python installed. On Ubuntu, this can be
|
||||
# done easily by running the command: sudo apt-get install libboost-python-dev cmake
|
||||
|
||||
|
||||
import dlib
|
||||
|
||||
def dot(a, b):
|
||||
return sum(i*j for i,j in zip(a,b))
|
||||
|
||||
|
||||
class three_class_classifier_problem:
|
||||
C = 10
|
||||
be_verbose = True
|
||||
epsilon = 0.0001
|
||||
|
||||
def __init__(self, samples, labels):
|
||||
self.num_samples = len(samples)
|
||||
self.num_dimensions = len(samples[0])*3
|
||||
self.samples = samples
|
||||
self.labels = labels
|
||||
|
||||
def make_psi(self, psi, vector, label):
|
||||
psi.resize(self.num_dimensions)
|
||||
dims = len(vector)
|
||||
if (label == 1):
|
||||
for i in range(0,dims):
|
||||
psi[i] = vector[i]
|
||||
elif (label == 2):
|
||||
for i in range(dims,2*dims):
|
||||
psi[i] = vector[i-dims]
|
||||
else:
|
||||
for i in range(2*dims,3*dims):
|
||||
psi[i] = vector[i-2*dims]
|
||||
|
||||
|
||||
def get_truth_joint_feature_vector(self, idx, psi):
|
||||
self.make_psi(psi, self.samples[idx], self.labels[idx])
|
||||
|
||||
def separation_oracle(self, idx, current_solution, psi):
|
||||
samp = samples[idx]
|
||||
dims = len(samp)
|
||||
scores = [0,0,0]
|
||||
# compute scores for each of the three classifiers
|
||||
scores[0] = dot(current_solution[0:dims], samp)
|
||||
scores[1] = dot(current_solution[dims:2*dims], samp)
|
||||
scores[2] = dot(current_solution[2*dims:3*dims], samp)
|
||||
|
||||
# Add in the loss-augmentation
|
||||
if (labels[idx] != 1):
|
||||
scores[0] += 1
|
||||
if (labels[idx] != 2):
|
||||
scores[1] += 1
|
||||
if (labels[idx] != 3):
|
||||
scores[2] += 1
|
||||
|
||||
|
||||
# Now figure out which classifier has the largest loss-augmented score.
|
||||
max_scoring_label = scores.index(max(scores))+1
|
||||
if (max_scoring_label == labels[idx]):
|
||||
loss = 0
|
||||
else:
|
||||
loss = 1
|
||||
|
||||
self.make_psi(psi, samp, max_scoring_label)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
|
||||
samples = [ [0,0,1], [0,1,0], [1,0,0]];
|
||||
labels = [1, 2, 3]
|
||||
|
||||
problem = three_class_classifier_problem(samples, labels)
|
||||
weights = dlib.solve_structural_svm_problem(problem)
|
||||
print weights
|
||||
|
Loading…
Reference in New Issue