2017-11-15 20:01:52 +08:00
|
|
|
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
|
|
|
/*
|
|
|
|
This example shows how to train a semantic segmentation net using the PASCAL VOC2012
|
|
|
|
dataset. For an introduction to what segmentation is, see the accompanying header file
|
|
|
|
dnn_semantic_segmentation_ex.h.
|
|
|
|
|
|
|
|
Instructions how to run the example:
|
|
|
|
1. Download the PASCAL VOC2012 data, and untar it somewhere.
|
|
|
|
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
|
|
|
|
2. Build the dnn_semantic_segmentation_train_ex example program.
|
|
|
|
3. Run:
|
|
|
|
./dnn_semantic_segmentation_train_ex /path/to/VOC2012
|
|
|
|
4. Wait while the network is being trained.
|
|
|
|
5. Build the dnn_semantic_segmentation_ex example program.
|
|
|
|
6. Run:
|
|
|
|
./dnn_semantic_segmentation_ex /path/to/VOC2012-or-other-images
|
|
|
|
|
|
|
|
It would be a good idea to become familiar with dlib's DNN tooling before reading this
|
|
|
|
example. So you should read dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp
|
|
|
|
before reading this example program.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "dnn_semantic_segmentation_ex.h"
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
#include <dlib/data_io.h>
|
|
|
|
#include <dlib/image_transforms.h>
|
|
|
|
#include <dlib/dir_nav.h>
|
|
|
|
#include <iterator>
|
|
|
|
#include <thread>
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace dlib;
|
|
|
|
|
|
|
|
// A single training sample. A mini-batch comprises many of these.
|
|
|
|
struct training_sample
|
|
|
|
{
|
|
|
|
matrix<rgb_pixel> input_image;
|
|
|
|
matrix<uint16_t> label_image; // The ground-truth label of each pixel.
|
|
|
|
};
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
|
2019-01-06 22:11:39 +08:00
|
|
|
rectangle make_random_cropping_rect(
|
2017-11-15 20:01:52 +08:00
|
|
|
const matrix<rgb_pixel>& img,
|
|
|
|
dlib::rand& rnd
|
|
|
|
)
|
|
|
|
{
|
|
|
|
// figure out what rectangle we want to crop from the image
|
|
|
|
double mins = 0.466666666, maxs = 0.875;
|
|
|
|
auto scale = mins + rnd.get_random_double()*(maxs-mins);
|
|
|
|
auto size = scale*std::min(img.nr(), img.nc());
|
|
|
|
rectangle rect(size, size);
|
|
|
|
// randomly shift the box around
|
|
|
|
point offset(rnd.get_random_32bit_number()%(img.nc()-rect.width()),
|
|
|
|
rnd.get_random_32bit_number()%(img.nr()-rect.height()));
|
|
|
|
return move_rect(rect, offset);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
void randomly_crop_image (
|
|
|
|
const matrix<rgb_pixel>& input_image,
|
|
|
|
const matrix<uint16_t>& label_image,
|
|
|
|
training_sample& crop,
|
|
|
|
dlib::rand& rnd
|
|
|
|
)
|
|
|
|
{
|
2019-01-06 22:11:39 +08:00
|
|
|
const auto rect = make_random_cropping_rect(input_image, rnd);
|
2017-11-15 20:01:52 +08:00
|
|
|
|
|
|
|
const chip_details chip_details(rect, chip_dims(227, 227));
|
|
|
|
|
|
|
|
// Crop the input image.
|
|
|
|
extract_image_chip(input_image, chip_details, crop.input_image, interpolate_bilinear());
|
|
|
|
|
|
|
|
// Crop the labels correspondingly. However, note that here bilinear
|
|
|
|
// interpolation would make absolutely no sense - you wouldn't say that
|
|
|
|
// a bicycle is half-way between an aeroplane and a bird, would you?
|
|
|
|
extract_image_chip(label_image, chip_details, crop.label_image, interpolate_nearest_neighbor());
|
|
|
|
|
|
|
|
// Also randomly flip the input image and the labels.
|
|
|
|
if (rnd.get_random_double() > 0.5)
|
|
|
|
{
|
|
|
|
crop.input_image = fliplr(crop.input_image);
|
|
|
|
crop.label_image = fliplr(crop.label_image);
|
|
|
|
}
|
|
|
|
|
|
|
|
// And then randomly adjust the colors.
|
|
|
|
apply_random_color_offset(crop.input_image, rnd);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
// Calculate the per-pixel accuracy on a dataset whose file names are supplied as a parameter.
|
|
|
|
double calculate_accuracy(anet_type& anet, const std::vector<image_info>& dataset)
|
|
|
|
{
|
|
|
|
int num_right = 0;
|
|
|
|
int num_wrong = 0;
|
|
|
|
|
|
|
|
matrix<rgb_pixel> input_image;
|
|
|
|
matrix<rgb_pixel> rgb_label_image;
|
|
|
|
matrix<uint16_t> index_label_image;
|
|
|
|
matrix<uint16_t> net_output;
|
|
|
|
|
|
|
|
for (const auto& image_info : dataset)
|
|
|
|
{
|
|
|
|
// Load the input image.
|
|
|
|
load_image(input_image, image_info.image_filename);
|
|
|
|
|
|
|
|
// Load the ground-truth (RGB) labels.
|
Instance segmentation (#1918)
* Add instance segmentation example - first version of training code
* Add MMOD options; get rid of the cache approach, and instead load all MMOD rects upfront
* Improve console output
* Set filter count
* Minor tweaking
* Inference - first version, at least compiles!
* Ignore overlapped boxes
* Ignore even small instances
* Set overlaps_ignore
* Add TODO remarks
* Revert "Set overlaps_ignore"
This reverts commit 65adeff1f89af62b10c691e7aa86c04fc358d03e.
* Set result size
* Set label image size
* Take ignore-color into account
* Fix the cropping rect's aspect ratio; also slightly expand the rect
* Draw the largest findings last
* Improve masking of the current instance
* Add some perturbation to the inputs
* Simplify ground-truth reading; fix random cropping
* Read even class labels
* Tweak default minibatch size
* Learn only one class
* Really train only instances of the selected class
* Remove outdated TODO remark
* Automatically skip images with no detections
* Print to console what was found
* Fix class index problem
* Fix indentation
* Allow to choose multiple classes
* Draw rect in the color of the corresponding class
* Write detector window classes to ostream; also group detection windows by class (when ostreaming)
* Train a separate instance segmentation network for each classlabel
* Use separate synchronization file for each seg net of each class
* Allow more overlap
* Fix sorting criterion
* Fix interpolating the predicted mask
* Improve bilinear interpolation: if output type is an integer, round instead of truncating
* Add helpful comments
* Ignore large aspect ratios; refactor the code; tweak some network parameters
* Simplify the segmentation network structure; make the object detection network more complex in turn
* Problem: CUDA errors not reported properly to console
Solution: stop and join data loader threads even in case of exceptions
* Minor parameters tweaking
* Loss may have increased, even if prob_loss_increasing_thresh > prob_loss_increasing_thresh_max_value
* Add previous_loss_values_dump_amount to previous_loss_values.size() when deciding if loss has been increasing
* Improve behaviour when loss actually increased after disk sync
* Revert some of the earlier change
* Disregard dumped loss values only when deciding if learning rate should be shrunk, but *not* when deciding if loss has been going up since last disk sync
* Revert "Revert some of the earlier change"
This reverts commit 6c852124efe6473a5c962de0091709129d6fcde3.
* Keep enough previous loss values, until the disk sync
* Fix maintaining the dumped (now "effectively disregarded") loss values count
* Detect cats instead of aeroplanes
* Add helpful logging
* Clarify the intention and the code
* Review fixes
* Add operator== for the other pixel types as well; remove the inline
* If available, use constexpr if
* Revert "If available, use constexpr if"
This reverts commit 503d4dd3355ff8ad613116e3ffcc0fa664674f69.
* Simplify code as per review comments
* Keep estimating steps_without_progress, even if steps_since_last_learning_rate_shrink < iter_without_progress_thresh
* Clarify console output
* Revert "Keep estimating steps_without_progress, even if steps_since_last_learning_rate_shrink < iter_without_progress_thresh"
This reverts commit 9191ebc7762d17d81cdfc334a80ca9a667365740.
* To keep the changes to a bare minimum, revert the steps_since_last_learning_rate_shrink change after all (at least for now)
* Even empty out some of the previous test loss values
* Minor review fixes
* Can't use C++14 features here
* Do not use the struct name as a variable name
2019-11-15 11:53:16 +08:00
|
|
|
load_image(rgb_label_image, image_info.class_label_filename);
|
2017-11-15 20:01:52 +08:00
|
|
|
|
|
|
|
// Create predictions for each pixel. At this point, the type of each prediction
|
|
|
|
// is an index (a value between 0 and 20). Note that the net may return an image
|
|
|
|
// that is not exactly the same size as the input.
|
|
|
|
const matrix<uint16_t> temp = anet(input_image);
|
|
|
|
|
Instance segmentation (#1918)
* Add instance segmentation example - first version of training code
* Add MMOD options; get rid of the cache approach, and instead load all MMOD rects upfront
* Improve console output
* Set filter count
* Minor tweaking
* Inference - first version, at least compiles!
* Ignore overlapped boxes
* Ignore even small instances
* Set overlaps_ignore
* Add TODO remarks
* Revert "Set overlaps_ignore"
This reverts commit 65adeff1f89af62b10c691e7aa86c04fc358d03e.
* Set result size
* Set label image size
* Take ignore-color into account
* Fix the cropping rect's aspect ratio; also slightly expand the rect
* Draw the largest findings last
* Improve masking of the current instance
* Add some perturbation to the inputs
* Simplify ground-truth reading; fix random cropping
* Read even class labels
* Tweak default minibatch size
* Learn only one class
* Really train only instances of the selected class
* Remove outdated TODO remark
* Automatically skip images with no detections
* Print to console what was found
* Fix class index problem
* Fix indentation
* Allow to choose multiple classes
* Draw rect in the color of the corresponding class
* Write detector window classes to ostream; also group detection windows by class (when ostreaming)
* Train a separate instance segmentation network for each classlabel
* Use separate synchronization file for each seg net of each class
* Allow more overlap
* Fix sorting criterion
* Fix interpolating the predicted mask
* Improve bilinear interpolation: if output type is an integer, round instead of truncating
* Add helpful comments
* Ignore large aspect ratios; refactor the code; tweak some network parameters
* Simplify the segmentation network structure; make the object detection network more complex in turn
* Problem: CUDA errors not reported properly to console
Solution: stop and join data loader threads even in case of exceptions
* Minor parameters tweaking
* Loss may have increased, even if prob_loss_increasing_thresh > prob_loss_increasing_thresh_max_value
* Add previous_loss_values_dump_amount to previous_loss_values.size() when deciding if loss has been increasing
* Improve behaviour when loss actually increased after disk sync
* Revert some of the earlier change
* Disregard dumped loss values only when deciding if learning rate should be shrunk, but *not* when deciding if loss has been going up since last disk sync
* Revert "Revert some of the earlier change"
This reverts commit 6c852124efe6473a5c962de0091709129d6fcde3.
* Keep enough previous loss values, until the disk sync
* Fix maintaining the dumped (now "effectively disregarded") loss values count
* Detect cats instead of aeroplanes
* Add helpful logging
* Clarify the intention and the code
* Review fixes
* Add operator== for the other pixel types as well; remove the inline
* If available, use constexpr if
* Revert "If available, use constexpr if"
This reverts commit 503d4dd3355ff8ad613116e3ffcc0fa664674f69.
* Simplify code as per review comments
* Keep estimating steps_without_progress, even if steps_since_last_learning_rate_shrink < iter_without_progress_thresh
* Clarify console output
* Revert "Keep estimating steps_without_progress, even if steps_since_last_learning_rate_shrink < iter_without_progress_thresh"
This reverts commit 9191ebc7762d17d81cdfc334a80ca9a667365740.
* To keep the changes to a bare minimum, revert the steps_since_last_learning_rate_shrink change after all (at least for now)
* Even empty out some of the previous test loss values
* Minor review fixes
* Can't use C++14 features here
* Do not use the struct name as a variable name
2019-11-15 11:53:16 +08:00
|
|
|
// Convert the RGB values to indexes.
|
2017-11-15 20:01:52 +08:00
|
|
|
rgb_label_image_to_index_label_image(rgb_label_image, index_label_image);
|
|
|
|
|
|
|
|
// Crop the net output to be exactly the same size as the input.
|
|
|
|
const chip_details chip_details(
|
|
|
|
centered_rect(temp.nc() / 2, temp.nr() / 2, input_image.nc(), input_image.nr()),
|
|
|
|
chip_dims(input_image.nr(), input_image.nc())
|
|
|
|
);
|
|
|
|
extract_image_chip(temp, chip_details, net_output, interpolate_nearest_neighbor());
|
|
|
|
|
|
|
|
const long nr = index_label_image.nr();
|
|
|
|
const long nc = index_label_image.nc();
|
|
|
|
|
|
|
|
// Compare the predicted values to the ground-truth values.
|
|
|
|
for (long r = 0; r < nr; ++r)
|
|
|
|
{
|
|
|
|
for (long c = 0; c < nc; ++c)
|
|
|
|
{
|
|
|
|
const uint16_t truth = index_label_image(r, c);
|
|
|
|
if (truth != dlib::loss_multiclass_log_per_pixel_::label_to_ignore)
|
|
|
|
{
|
|
|
|
const uint16_t prediction = net_output(r, c);
|
|
|
|
if (prediction == truth)
|
|
|
|
{
|
|
|
|
++num_right;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
++num_wrong;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return the accuracy estimate.
|
|
|
|
return num_right / static_cast<double>(num_right + num_wrong);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
int main(int argc, char** argv) try
|
|
|
|
{
|
2019-01-06 22:11:39 +08:00
|
|
|
if (argc < 2 || argc > 3)
|
2017-11-15 20:01:52 +08:00
|
|
|
{
|
|
|
|
cout << "To run this program you need a copy of the PASCAL VOC2012 dataset." << endl;
|
|
|
|
cout << endl;
|
|
|
|
cout << "You call this program like this: " << endl;
|
2019-01-06 22:11:39 +08:00
|
|
|
cout << "./dnn_semantic_segmentation_train_ex /path/to/VOC2012 [minibatch-size]" << endl;
|
2017-11-15 20:01:52 +08:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
cout << "\nSCANNING PASCAL VOC2012 DATASET\n" << endl;
|
|
|
|
|
|
|
|
const auto listing = get_pascal_voc2012_train_listing(argv[1]);
|
|
|
|
cout << "images in dataset: " << listing.size() << endl;
|
|
|
|
if (listing.size() == 0)
|
|
|
|
{
|
|
|
|
cout << "Didn't find the VOC2012 dataset. " << endl;
|
|
|
|
return 1;
|
|
|
|
}
|
2019-01-06 22:11:39 +08:00
|
|
|
|
|
|
|
// a mini-batch smaller than the default can be used with GPUs having less memory
|
2019-03-04 09:12:43 +08:00
|
|
|
const unsigned int minibatch_size = argc == 3 ? std::stoi(argv[2]) : 23;
|
2019-01-06 22:11:39 +08:00
|
|
|
cout << "mini-batch size: " << minibatch_size << endl;
|
2017-11-15 20:01:52 +08:00
|
|
|
|
|
|
|
const double initial_learning_rate = 0.1;
|
|
|
|
const double weight_decay = 0.0001;
|
|
|
|
const double momentum = 0.9;
|
|
|
|
|
2019-01-06 22:11:39 +08:00
|
|
|
bnet_type bnet;
|
|
|
|
dnn_trainer<bnet_type> trainer(bnet,sgd(weight_decay, momentum));
|
2017-11-15 20:01:52 +08:00
|
|
|
trainer.be_verbose();
|
|
|
|
trainer.set_learning_rate(initial_learning_rate);
|
|
|
|
trainer.set_synchronization_file("pascal_voc2012_trainer_state_file.dat", std::chrono::minutes(10));
|
|
|
|
// This threshold is probably excessively large.
|
|
|
|
trainer.set_iterations_without_progress_threshold(5000);
|
|
|
|
// Since the progress threshold is so large might as well set the batch normalization
|
|
|
|
// stats window to something big too.
|
2019-01-06 22:11:39 +08:00
|
|
|
set_all_bn_running_stats_window_sizes(bnet, 1000);
|
2017-11-15 20:01:52 +08:00
|
|
|
|
|
|
|
// Output training parameters.
|
|
|
|
cout << endl << trainer << endl;
|
|
|
|
|
|
|
|
std::vector<matrix<rgb_pixel>> samples;
|
|
|
|
std::vector<matrix<uint16_t>> labels;
|
|
|
|
|
|
|
|
// Start a bunch of threads that read images from disk and pull out random crops. It's
|
|
|
|
// important to be sure to feed the GPU fast enough to keep it busy. Using multiple
|
|
|
|
// thread for this kind of data preparation helps us do that. Each thread puts the
|
|
|
|
// crops into the data queue.
|
|
|
|
dlib::pipe<training_sample> data(200);
|
|
|
|
auto f = [&data, &listing](time_t seed)
|
|
|
|
{
|
|
|
|
dlib::rand rnd(time(0)+seed);
|
|
|
|
matrix<rgb_pixel> input_image;
|
|
|
|
matrix<rgb_pixel> rgb_label_image;
|
|
|
|
matrix<uint16_t> index_label_image;
|
|
|
|
training_sample temp;
|
|
|
|
while(data.is_enabled())
|
|
|
|
{
|
|
|
|
// Pick a random input image.
|
|
|
|
const image_info& image_info = listing[rnd.get_random_32bit_number()%listing.size()];
|
|
|
|
|
|
|
|
// Load the input image.
|
|
|
|
load_image(input_image, image_info.image_filename);
|
|
|
|
|
|
|
|
// Load the ground-truth (RGB) labels.
|
Instance segmentation (#1918)
* Add instance segmentation example - first version of training code
* Add MMOD options; get rid of the cache approach, and instead load all MMOD rects upfront
* Improve console output
* Set filter count
* Minor tweaking
* Inference - first version, at least compiles!
* Ignore overlapped boxes
* Ignore even small instances
* Set overlaps_ignore
* Add TODO remarks
* Revert "Set overlaps_ignore"
This reverts commit 65adeff1f89af62b10c691e7aa86c04fc358d03e.
* Set result size
* Set label image size
* Take ignore-color into account
* Fix the cropping rect's aspect ratio; also slightly expand the rect
* Draw the largest findings last
* Improve masking of the current instance
* Add some perturbation to the inputs
* Simplify ground-truth reading; fix random cropping
* Read even class labels
* Tweak default minibatch size
* Learn only one class
* Really train only instances of the selected class
* Remove outdated TODO remark
* Automatically skip images with no detections
* Print to console what was found
* Fix class index problem
* Fix indentation
* Allow to choose multiple classes
* Draw rect in the color of the corresponding class
* Write detector window classes to ostream; also group detection windows by class (when ostreaming)
* Train a separate instance segmentation network for each classlabel
* Use separate synchronization file for each seg net of each class
* Allow more overlap
* Fix sorting criterion
* Fix interpolating the predicted mask
* Improve bilinear interpolation: if output type is an integer, round instead of truncating
* Add helpful comments
* Ignore large aspect ratios; refactor the code; tweak some network parameters
* Simplify the segmentation network structure; make the object detection network more complex in turn
* Problem: CUDA errors not reported properly to console
Solution: stop and join data loader threads even in case of exceptions
* Minor parameters tweaking
* Loss may have increased, even if prob_loss_increasing_thresh > prob_loss_increasing_thresh_max_value
* Add previous_loss_values_dump_amount to previous_loss_values.size() when deciding if loss has been increasing
* Improve behaviour when loss actually increased after disk sync
* Revert some of the earlier change
* Disregard dumped loss values only when deciding if learning rate should be shrunk, but *not* when deciding if loss has been going up since last disk sync
* Revert "Revert some of the earlier change"
This reverts commit 6c852124efe6473a5c962de0091709129d6fcde3.
* Keep enough previous loss values, until the disk sync
* Fix maintaining the dumped (now "effectively disregarded") loss values count
* Detect cats instead of aeroplanes
* Add helpful logging
* Clarify the intention and the code
* Review fixes
* Add operator== for the other pixel types as well; remove the inline
* If available, use constexpr if
* Revert "If available, use constexpr if"
This reverts commit 503d4dd3355ff8ad613116e3ffcc0fa664674f69.
* Simplify code as per review comments
* Keep estimating steps_without_progress, even if steps_since_last_learning_rate_shrink < iter_without_progress_thresh
* Clarify console output
* Revert "Keep estimating steps_without_progress, even if steps_since_last_learning_rate_shrink < iter_without_progress_thresh"
This reverts commit 9191ebc7762d17d81cdfc334a80ca9a667365740.
* To keep the changes to a bare minimum, revert the steps_since_last_learning_rate_shrink change after all (at least for now)
* Even empty out some of the previous test loss values
* Minor review fixes
* Can't use C++14 features here
* Do not use the struct name as a variable name
2019-11-15 11:53:16 +08:00
|
|
|
load_image(rgb_label_image, image_info.class_label_filename);
|
2017-11-15 20:01:52 +08:00
|
|
|
|
Instance segmentation (#1918)
* Add instance segmentation example - first version of training code
* Add MMOD options; get rid of the cache approach, and instead load all MMOD rects upfront
* Improve console output
* Set filter count
* Minor tweaking
* Inference - first version, at least compiles!
* Ignore overlapped boxes
* Ignore even small instances
* Set overlaps_ignore
* Add TODO remarks
* Revert "Set overlaps_ignore"
This reverts commit 65adeff1f89af62b10c691e7aa86c04fc358d03e.
* Set result size
* Set label image size
* Take ignore-color into account
* Fix the cropping rect's aspect ratio; also slightly expand the rect
* Draw the largest findings last
* Improve masking of the current instance
* Add some perturbation to the inputs
* Simplify ground-truth reading; fix random cropping
* Read even class labels
* Tweak default minibatch size
* Learn only one class
* Really train only instances of the selected class
* Remove outdated TODO remark
* Automatically skip images with no detections
* Print to console what was found
* Fix class index problem
* Fix indentation
* Allow to choose multiple classes
* Draw rect in the color of the corresponding class
* Write detector window classes to ostream; also group detection windows by class (when ostreaming)
* Train a separate instance segmentation network for each classlabel
* Use separate synchronization file for each seg net of each class
* Allow more overlap
* Fix sorting criterion
* Fix interpolating the predicted mask
* Improve bilinear interpolation: if output type is an integer, round instead of truncating
* Add helpful comments
* Ignore large aspect ratios; refactor the code; tweak some network parameters
* Simplify the segmentation network structure; make the object detection network more complex in turn
* Problem: CUDA errors not reported properly to console
Solution: stop and join data loader threads even in case of exceptions
* Minor parameters tweaking
* Loss may have increased, even if prob_loss_increasing_thresh > prob_loss_increasing_thresh_max_value
* Add previous_loss_values_dump_amount to previous_loss_values.size() when deciding if loss has been increasing
* Improve behaviour when loss actually increased after disk sync
* Revert some of the earlier change
* Disregard dumped loss values only when deciding if learning rate should be shrunk, but *not* when deciding if loss has been going up since last disk sync
* Revert "Revert some of the earlier change"
This reverts commit 6c852124efe6473a5c962de0091709129d6fcde3.
* Keep enough previous loss values, until the disk sync
* Fix maintaining the dumped (now "effectively disregarded") loss values count
* Detect cats instead of aeroplanes
* Add helpful logging
* Clarify the intention and the code
* Review fixes
* Add operator== for the other pixel types as well; remove the inline
* If available, use constexpr if
* Revert "If available, use constexpr if"
This reverts commit 503d4dd3355ff8ad613116e3ffcc0fa664674f69.
* Simplify code as per review comments
* Keep estimating steps_without_progress, even if steps_since_last_learning_rate_shrink < iter_without_progress_thresh
* Clarify console output
* Revert "Keep estimating steps_without_progress, even if steps_since_last_learning_rate_shrink < iter_without_progress_thresh"
This reverts commit 9191ebc7762d17d81cdfc334a80ca9a667365740.
* To keep the changes to a bare minimum, revert the steps_since_last_learning_rate_shrink change after all (at least for now)
* Even empty out some of the previous test loss values
* Minor review fixes
* Can't use C++14 features here
* Do not use the struct name as a variable name
2019-11-15 11:53:16 +08:00
|
|
|
// Convert the RGB values to indexes.
|
2017-11-15 20:01:52 +08:00
|
|
|
rgb_label_image_to_index_label_image(rgb_label_image, index_label_image);
|
|
|
|
|
|
|
|
// Randomly pick a part of the image.
|
|
|
|
randomly_crop_image(input_image, index_label_image, temp, rnd);
|
|
|
|
|
|
|
|
// Push the result to be used by the trainer.
|
|
|
|
data.enqueue(temp);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
std::thread data_loader1([f](){ f(1); });
|
|
|
|
std::thread data_loader2([f](){ f(2); });
|
|
|
|
std::thread data_loader3([f](){ f(3); });
|
|
|
|
std::thread data_loader4([f](){ f(4); });
|
|
|
|
|
|
|
|
// The main training loop. Keep making mini-batches and giving them to the trainer.
|
|
|
|
// We will run until the learning rate has dropped by a factor of 1e-4.
|
|
|
|
while(trainer.get_learning_rate() >= 1e-4)
|
|
|
|
{
|
|
|
|
samples.clear();
|
|
|
|
labels.clear();
|
|
|
|
|
2019-01-06 22:11:39 +08:00
|
|
|
// make a mini-batch
|
2017-11-15 20:01:52 +08:00
|
|
|
training_sample temp;
|
2019-01-06 22:11:39 +08:00
|
|
|
while(samples.size() < minibatch_size)
|
2017-11-15 20:01:52 +08:00
|
|
|
{
|
|
|
|
data.dequeue(temp);
|
|
|
|
|
|
|
|
samples.push_back(std::move(temp.input_image));
|
|
|
|
labels.push_back(std::move(temp.label_image));
|
|
|
|
}
|
|
|
|
|
|
|
|
trainer.train_one_step(samples, labels);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Training done, tell threads to stop and make sure to wait for them to finish before
|
|
|
|
// moving on.
|
|
|
|
data.disable();
|
|
|
|
data_loader1.join();
|
|
|
|
data_loader2.join();
|
|
|
|
data_loader3.join();
|
|
|
|
data_loader4.join();
|
|
|
|
|
|
|
|
// also wait for threaded processing to stop in the trainer.
|
|
|
|
trainer.get_net();
|
|
|
|
|
2019-01-06 22:11:39 +08:00
|
|
|
bnet.clean();
|
2017-11-15 20:01:52 +08:00
|
|
|
cout << "saving network" << endl;
|
2019-01-06 22:11:39 +08:00
|
|
|
serialize(semantic_segmentation_net_filename) << bnet;
|
2017-11-15 20:01:52 +08:00
|
|
|
|
|
|
|
|
|
|
|
// Make a copy of the network to use it for inference.
|
2019-01-06 22:11:39 +08:00
|
|
|
anet_type anet = bnet;
|
2017-11-15 20:01:52 +08:00
|
|
|
|
|
|
|
cout << "Testing the network..." << endl;
|
|
|
|
|
|
|
|
// Find the accuracy of the newly trained network on both the training and the validation sets.
|
|
|
|
cout << "train accuracy : " << calculate_accuracy(anet, get_pascal_voc2012_train_listing(argv[1])) << endl;
|
|
|
|
cout << "val accuracy : " << calculate_accuracy(anet, get_pascal_voc2012_val_listing(argv[1])) << endl;
|
|
|
|
}
|
|
|
|
catch(std::exception& e)
|
|
|
|
{
|
|
|
|
cout << e.what() << endl;
|
|
|
|
}
|
|
|
|
|