303 lines
14 KiB
Python
Executable File
303 lines
14 KiB
Python
Executable File
import os
|
|
import sys
|
|
import time
|
|
import random
|
|
import string
|
|
import argparse
|
|
|
|
import torch
|
|
import torch.backends.cudnn as cudnn
|
|
import torch.nn.init as init
|
|
import torch.optim as optim
|
|
import torch.utils.data
|
|
import numpy as np
|
|
|
|
from utils import CTCLabelConverter, AttnLabelConverter, Averager
|
|
from dataset import hierarchical_dataset, AlignCollate, Batch_Balanced_Dataset
|
|
from model import Model
|
|
from test import validation
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
|
def train(opt):
|
|
""" dataset preparation """
|
|
opt.select_data = opt.select_data.split('-')
|
|
opt.batch_ratio = opt.batch_ratio.split('-')
|
|
train_dataset = Batch_Balanced_Dataset(opt)
|
|
|
|
AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
|
|
valid_dataset = hierarchical_dataset(root=opt.valid_data, opt=opt)
|
|
valid_loader = torch.utils.data.DataLoader(
|
|
valid_dataset, batch_size=opt.batch_size,
|
|
shuffle=True, # 'True' to check training progress with validation function.
|
|
num_workers=int(opt.workers),
|
|
collate_fn=AlignCollate_valid, pin_memory=True)
|
|
print('-' * 80)
|
|
|
|
""" model configuration """
|
|
if 'CTC' in opt.Prediction:
|
|
converter = CTCLabelConverter(opt.character)
|
|
else:
|
|
converter = AttnLabelConverter(opt.character)
|
|
opt.num_class = len(converter.character)
|
|
|
|
if opt.rgb:
|
|
opt.input_channel = 3
|
|
model = Model(opt)
|
|
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
|
|
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
|
|
opt.SequenceModeling, opt.Prediction)
|
|
|
|
# weight initialization
|
|
for name, param in model.named_parameters():
|
|
if 'localization_fc2' in name:
|
|
print(f'Skip {name} as it is already initialized')
|
|
continue
|
|
try:
|
|
if 'bias' in name:
|
|
init.constant_(param, 0.0)
|
|
elif 'weight' in name:
|
|
init.kaiming_normal_(param)
|
|
except Exception as e: # for batchnorm.
|
|
if 'weight' in name:
|
|
param.data.fill_(1)
|
|
continue
|
|
|
|
# data parallel for multi-GPU
|
|
model = torch.nn.DataParallel(model).to(device)
|
|
model.train()
|
|
if opt.saved_model != '':
|
|
print(f'loading pretrained model from {opt.saved_model}')
|
|
if opt.FT:
|
|
model.load_state_dict(torch.load(opt.saved_model), strict=False)
|
|
else:
|
|
model.load_state_dict(torch.load(opt.saved_model))
|
|
print("Model:")
|
|
print(model)
|
|
|
|
""" setup loss """
|
|
if 'CTC' in opt.Prediction:
|
|
criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
|
|
else:
|
|
criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device) # ignore [GO] token = ignore index 0
|
|
# loss averager
|
|
loss_avg = Averager()
|
|
|
|
# filter that only require gradient decent
|
|
filtered_parameters = []
|
|
params_num = []
|
|
for p in filter(lambda p: p.requires_grad, model.parameters()):
|
|
filtered_parameters.append(p)
|
|
params_num.append(np.prod(p.size()))
|
|
print('Trainable params num : ', sum(params_num))
|
|
# [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]
|
|
|
|
# setup optimizer
|
|
if opt.adam:
|
|
optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
|
|
else:
|
|
optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
|
|
print("Optimizer:")
|
|
print(optimizer)
|
|
|
|
""" final options """
|
|
# print(opt)
|
|
with open(f'./saved_models/{opt.experiment_name}/opt.txt', 'a') as opt_file:
|
|
opt_log = '------------ Options -------------\n'
|
|
args = vars(opt)
|
|
for k, v in args.items():
|
|
opt_log += f'{str(k)}: {str(v)}\n'
|
|
opt_log += '---------------------------------------\n'
|
|
print(opt_log)
|
|
opt_file.write(opt_log)
|
|
|
|
""" start training """
|
|
start_iter = 0
|
|
if opt.saved_model != '':
|
|
start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
|
|
print(f'continue to train, start_iter: {start_iter}')
|
|
|
|
start_time = time.time()
|
|
best_accuracy = -1
|
|
best_norm_ED = 1e+6
|
|
i = start_iter
|
|
|
|
while(True):
|
|
# train part
|
|
image_tensors, labels = train_dataset.get_batch()
|
|
image = image_tensors.to(device)
|
|
text, length = converter.encode(labels, batch_max_length=opt.batch_max_length)
|
|
batch_size = image.size(0)
|
|
|
|
if 'CTC' in opt.Prediction:
|
|
preds = model(image, text).log_softmax(2)
|
|
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
|
|
preds = preds.permute(1, 0, 2)
|
|
|
|
# (ctc_a) For PyTorch 1.2.0 and 1.3.0. To avoid ctc_loss issue, disabled cudnn for the computation of the ctc_loss
|
|
# https://github.com/jpuigcerver/PyLaia/issues/16
|
|
torch.backends.cudnn.enabled = False
|
|
cost = criterion(preds, text.to(device), preds_size.to(device), length.to(device))
|
|
torch.backends.cudnn.enabled = True
|
|
|
|
# # (ctc_b) To reproduce our pretrained model / paper, use our previous code (below code) instead of (ctc_a).
|
|
# # With PyTorch 1.2.0, the below code occurs NAN, so you may use PyTorch 1.1.0.
|
|
# # Thus, the result of CTCLoss is different in PyTorch 1.1.0 and PyTorch 1.2.0.
|
|
# # See https://github.com/clovaai/deep-text-recognition-benchmark/issues/56#issuecomment-526490707
|
|
# cost = criterion(preds, text, preds_size, length)
|
|
|
|
else:
|
|
preds = model(image, text[:, :-1]) # align with Attention.forward
|
|
target = text[:, 1:] # without [GO] Symbol
|
|
cost = criterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1))
|
|
|
|
model.zero_grad()
|
|
cost.backward()
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip) # gradient clipping with 5 (Default)
|
|
optimizer.step()
|
|
|
|
loss_avg.add(cost)
|
|
|
|
# validation part
|
|
if i % opt.valInterval == 0:
|
|
elapsed_time = time.time() - start_time
|
|
# for log
|
|
with open(f'./saved_models/{opt.experiment_name}/log_train.txt', 'a') as log:
|
|
model.eval()
|
|
with torch.no_grad():
|
|
valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
|
|
model, criterion, valid_loader, converter, opt)
|
|
model.train()
|
|
|
|
# training loss and validation loss
|
|
loss_log = f'[{i}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
|
|
print(loss_log)
|
|
log.write(loss_log + '\n')
|
|
loss_avg.reset()
|
|
|
|
current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'
|
|
print(current_model_log)
|
|
log.write(current_model_log + '\n')
|
|
|
|
# keep best accuracy model (on valid dataset)
|
|
if current_accuracy > best_accuracy:
|
|
best_accuracy = current_accuracy
|
|
torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_accuracy.pth')
|
|
if current_norm_ED < best_norm_ED:
|
|
best_norm_ED = current_norm_ED
|
|
torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_norm_ED.pth')
|
|
best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'
|
|
print(best_model_log)
|
|
log.write(best_model_log + '\n')
|
|
|
|
# show some predicted results
|
|
print('-' * 80)
|
|
print(f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F')
|
|
log.write(f'{"Ground Truth":25s} | {"Prediction":25s} | {"Confidence Score"}\n')
|
|
print('-' * 80)
|
|
for gt, pred, confidence in zip(labels[:5], preds[:5], confidence_score[:5]):
|
|
if 'Attn' in opt.Prediction:
|
|
gt = gt[:gt.find('[s]')]
|
|
pred = pred[:pred.find('[s]')]
|
|
|
|
print(f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}')
|
|
log.write(f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n')
|
|
print('-' * 80)
|
|
|
|
# save model per 1e+5 iter.
|
|
if (i + 1) % 1e+5 == 0:
|
|
torch.save(
|
|
model.state_dict(), f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')
|
|
|
|
if i == opt.num_iter:
|
|
print('end the training')
|
|
sys.exit()
|
|
i += 1
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--experiment_name', help='Where to store logs and models')
|
|
parser.add_argument('--train_data', required=True, help='path to training dataset')
|
|
parser.add_argument('--valid_data', required=True, help='path to validation dataset')
|
|
parser.add_argument('--manualSeed', type=int, default=1111, help='for random seed setting')
|
|
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
|
|
parser.add_argument('--batch_size', type=int, default=192, help='input batch size')
|
|
parser.add_argument('--num_iter', type=int, default=300000, help='number of iterations to train for')
|
|
parser.add_argument('--valInterval', type=int, default=2000, help='Interval between each validation')
|
|
parser.add_argument('--saved_model', default='', help="path to model to continue training")
|
|
parser.add_argument('--FT', action='store_true', help='whether to do fine-tuning')
|
|
parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is Adadelta)')
|
|
parser.add_argument('--lr', type=float, default=1, help='learning rate, default=1.0 for Adadelta')
|
|
parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam. default=0.9')
|
|
parser.add_argument('--rho', type=float, default=0.95, help='decay rate rho for Adadelta. default=0.95')
|
|
parser.add_argument('--eps', type=float, default=1e-8, help='eps for Adadelta. default=1e-8')
|
|
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping value. default=5')
|
|
""" Data processing """
|
|
parser.add_argument('--select_data', type=str, default='MJ-ST',
|
|
help='select training data (default is MJ-ST, which means MJ and ST used as training data)')
|
|
parser.add_argument('--batch_ratio', type=str, default='0.5-0.5',
|
|
help='assign ratio for each selected data in the batch')
|
|
parser.add_argument('--total_data_usage_ratio', type=str, default='1.0',
|
|
help='total data usage ratio, this ratio is multiplied to total number of data.')
|
|
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
|
|
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
|
|
parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
|
|
parser.add_argument('--rgb', action='store_true', help='use rgb input')
|
|
parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
|
|
parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
|
|
parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
|
|
parser.add_argument('--data_filtering_off', action='store_true', help='for data_filtering_off mode')
|
|
""" Model Architecture """
|
|
parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS')
|
|
parser.add_argument('--FeatureExtraction', type=str, required=True, help='FeatureExtraction stage. VGG|RCNN|ResNet')
|
|
parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM')
|
|
parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. CTC|Attn')
|
|
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
|
|
parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor')
|
|
parser.add_argument('--output_channel', type=int, default=512,
|
|
help='the number of output channel of Feature extractor')
|
|
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
|
|
|
|
opt = parser.parse_args()
|
|
|
|
if not opt.experiment_name:
|
|
opt.experiment_name = f'{opt.Transformation}-{opt.FeatureExtraction}-{opt.SequenceModeling}-{opt.Prediction}'
|
|
opt.experiment_name += f'-Seed{opt.manualSeed}'
|
|
# print(opt.experiment_name)
|
|
|
|
os.makedirs(f'./saved_models/{opt.experiment_name}', exist_ok=True)
|
|
|
|
""" vocab / character number configuration """
|
|
if opt.sensitive:
|
|
# opt.character += 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
|
|
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
|
|
|
|
""" Seed and GPU setting """
|
|
# print("Random Seed: ", opt.manualSeed)
|
|
random.seed(opt.manualSeed)
|
|
np.random.seed(opt.manualSeed)
|
|
torch.manual_seed(opt.manualSeed)
|
|
torch.cuda.manual_seed(opt.manualSeed)
|
|
|
|
cudnn.benchmark = True
|
|
cudnn.deterministic = True
|
|
opt.num_gpu = torch.cuda.device_count()
|
|
# print('device count', opt.num_gpu)
|
|
if opt.num_gpu > 1:
|
|
print('------ Use multi-GPU setting ------')
|
|
print('if you stuck too long time with multi-GPU setting, try to set --workers 0')
|
|
# check multi-GPU issue https://github.com/clovaai/deep-text-recognition-benchmark/issues/1
|
|
opt.workers = opt.workers * opt.num_gpu
|
|
opt.batch_size = opt.batch_size * opt.num_gpu
|
|
|
|
""" previous version
|
|
print('To equlize batch stats to 1-GPU setting, the batch_size is multiplied with num_gpu and multiplied batch_size is ', opt.batch_size)
|
|
opt.batch_size = opt.batch_size * opt.num_gpu
|
|
print('To equalize the number of epochs to 1-GPU setting, num_iter is divided with num_gpu by default.')
|
|
If you dont care about it, just commnet out these line.)
|
|
opt.num_iter = int(opt.num_iter / opt.num_gpu)
|
|
"""
|
|
|
|
train(opt)
|