165 lines
8.1 KiB
Python
Executable File
165 lines
8.1 KiB
Python
Executable File
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
|
class TPS_SpatialTransformerNetwork(nn.Module):
|
|
""" Rectification Network of RARE, namely TPS based STN """
|
|
|
|
def __init__(self, F, I_size, I_r_size, I_channel_num=1):
|
|
""" Based on RARE TPS
|
|
input:
|
|
batch_I: Batch Input Image [batch_size x I_channel_num x I_height x I_width]
|
|
I_size : (height, width) of the input image I
|
|
I_r_size : (height, width) of the rectified image I_r
|
|
I_channel_num : the number of channels of the input image I
|
|
output:
|
|
batch_I_r: rectified image [batch_size x I_channel_num x I_r_height x I_r_width]
|
|
"""
|
|
super(TPS_SpatialTransformerNetwork, self).__init__()
|
|
self.F = F
|
|
self.I_size = I_size
|
|
self.I_r_size = I_r_size # = (I_r_height, I_r_width)
|
|
self.I_channel_num = I_channel_num
|
|
self.LocalizationNetwork = LocalizationNetwork(self.F, self.I_channel_num)
|
|
self.GridGenerator = GridGenerator(self.F, self.I_r_size)
|
|
|
|
def forward(self, batch_I):
|
|
batch_C_prime = self.LocalizationNetwork(batch_I) # batch_size x K x 2
|
|
build_P_prime = self.GridGenerator.build_P_prime(batch_C_prime) # batch_size x n (= I_r_width x I_r_height) x 2
|
|
build_P_prime_reshape = build_P_prime.reshape([build_P_prime.size(0), self.I_r_size[0], self.I_r_size[1], 2])
|
|
|
|
if torch.__version__ > "1.2.0":
|
|
batch_I_r = F.grid_sample(batch_I, build_P_prime_reshape, padding_mode='border', align_corners=True)
|
|
else:
|
|
batch_I_r = F.grid_sample(batch_I, build_P_prime_reshape, padding_mode='border')
|
|
|
|
return batch_I_r
|
|
|
|
|
|
class LocalizationNetwork(nn.Module):
|
|
""" Localization Network of RARE, which predicts C' (K x 2) from I (I_width x I_height) """
|
|
|
|
def __init__(self, F, I_channel_num):
|
|
super(LocalizationNetwork, self).__init__()
|
|
self.F = F
|
|
self.I_channel_num = I_channel_num
|
|
self.conv = nn.Sequential(
|
|
nn.Conv2d(in_channels=self.I_channel_num, out_channels=64, kernel_size=3, stride=1, padding=1,
|
|
bias=False), nn.BatchNorm2d(64), nn.ReLU(True),
|
|
nn.MaxPool2d(2, 2), # batch_size x 64 x I_height/2 x I_width/2
|
|
nn.Conv2d(64, 128, 3, 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(True),
|
|
nn.MaxPool2d(2, 2), # batch_size x 128 x I_height/4 x I_width/4
|
|
nn.Conv2d(128, 256, 3, 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(True),
|
|
nn.MaxPool2d(2, 2), # batch_size x 256 x I_height/8 x I_width/8
|
|
nn.Conv2d(256, 512, 3, 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(True),
|
|
nn.AdaptiveAvgPool2d(1) # batch_size x 512
|
|
)
|
|
|
|
self.localization_fc1 = nn.Sequential(nn.Linear(512, 256), nn.ReLU(True))
|
|
self.localization_fc2 = nn.Linear(256, self.F * 2)
|
|
|
|
# Init fc2 in LocalizationNetwork
|
|
self.localization_fc2.weight.data.fill_(0)
|
|
""" see RARE paper Fig. 6 (a) """
|
|
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
|
|
ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
|
|
ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
|
|
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
|
|
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
|
|
initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
|
|
self.localization_fc2.bias.data = torch.from_numpy(initial_bias).float().view(-1)
|
|
|
|
def forward(self, batch_I):
|
|
"""
|
|
input: batch_I : Batch Input Image [batch_size x I_channel_num x I_height x I_width]
|
|
output: batch_C_prime : Predicted coordinates of fiducial points for input batch [batch_size x F x 2]
|
|
"""
|
|
batch_size = batch_I.size(0)
|
|
features = self.conv(batch_I).view(batch_size, -1)
|
|
batch_C_prime = self.localization_fc2(self.localization_fc1(features)).view(batch_size, self.F, 2)
|
|
return batch_C_prime
|
|
|
|
|
|
class GridGenerator(nn.Module):
|
|
""" Grid Generator of RARE, which produces P_prime by multipling T with P """
|
|
|
|
def __init__(self, F, I_r_size):
|
|
""" Generate P_hat and inv_delta_C for later """
|
|
super(GridGenerator, self).__init__()
|
|
self.eps = 1e-6
|
|
self.I_r_height, self.I_r_width = I_r_size
|
|
self.F = F
|
|
self.C = self._build_C(self.F) # F x 2
|
|
self.P = self._build_P(self.I_r_width, self.I_r_height)
|
|
## for multi-gpu, you need register buffer
|
|
self.register_buffer("inv_delta_C", torch.tensor(self._build_inv_delta_C(self.F, self.C)).float()) # F+3 x F+3
|
|
self.register_buffer("P_hat", torch.tensor(self._build_P_hat(self.F, self.C, self.P)).float()) # n x F+3
|
|
## for fine-tuning with different image width, you may use below instead of self.register_buffer
|
|
#self.inv_delta_C = torch.tensor(self._build_inv_delta_C(self.F, self.C)).float().cuda() # F+3 x F+3
|
|
#self.P_hat = torch.tensor(self._build_P_hat(self.F, self.C, self.P)).float().cuda() # n x F+3
|
|
|
|
def _build_C(self, F):
|
|
""" Return coordinates of fiducial points in I_r; C """
|
|
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
|
|
ctrl_pts_y_top = -1 * np.ones(int(F / 2))
|
|
ctrl_pts_y_bottom = np.ones(int(F / 2))
|
|
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
|
|
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
|
|
C = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
|
|
return C # F x 2
|
|
|
|
def _build_inv_delta_C(self, F, C):
|
|
""" Return inv_delta_C which is needed to calculate T """
|
|
hat_C = np.zeros((F, F), dtype=float) # F x F
|
|
for i in range(0, F):
|
|
for j in range(i, F):
|
|
r = np.linalg.norm(C[i] - C[j])
|
|
hat_C[i, j] = r
|
|
hat_C[j, i] = r
|
|
np.fill_diagonal(hat_C, 1)
|
|
hat_C = (hat_C ** 2) * np.log(hat_C)
|
|
# print(C.shape, hat_C.shape)
|
|
delta_C = np.concatenate( # F+3 x F+3
|
|
[
|
|
np.concatenate([np.ones((F, 1)), C, hat_C], axis=1), # F x F+3
|
|
np.concatenate([np.zeros((2, 3)), np.transpose(C)], axis=1), # 2 x F+3
|
|
np.concatenate([np.zeros((1, 3)), np.ones((1, F))], axis=1) # 1 x F+3
|
|
],
|
|
axis=0
|
|
)
|
|
inv_delta_C = np.linalg.inv(delta_C)
|
|
return inv_delta_C # F+3 x F+3
|
|
|
|
def _build_P(self, I_r_width, I_r_height):
|
|
I_r_grid_x = (np.arange(-I_r_width, I_r_width, 2) + 1.0) / I_r_width # self.I_r_width
|
|
I_r_grid_y = (np.arange(-I_r_height, I_r_height, 2) + 1.0) / I_r_height # self.I_r_height
|
|
P = np.stack( # self.I_r_width x self.I_r_height x 2
|
|
np.meshgrid(I_r_grid_x, I_r_grid_y),
|
|
axis=2
|
|
)
|
|
return P.reshape([-1, 2]) # n (= self.I_r_width x self.I_r_height) x 2
|
|
|
|
def _build_P_hat(self, F, C, P):
|
|
n = P.shape[0] # n (= self.I_r_width x self.I_r_height)
|
|
P_tile = np.tile(np.expand_dims(P, axis=1), (1, F, 1)) # n x 2 -> n x 1 x 2 -> n x F x 2
|
|
C_tile = np.expand_dims(C, axis=0) # 1 x F x 2
|
|
P_diff = P_tile - C_tile # n x F x 2
|
|
rbf_norm = np.linalg.norm(P_diff, ord=2, axis=2, keepdims=False) # n x F
|
|
rbf = np.multiply(np.square(rbf_norm), np.log(rbf_norm + self.eps)) # n x F
|
|
P_hat = np.concatenate([np.ones((n, 1)), P, rbf], axis=1)
|
|
return P_hat # n x F+3
|
|
|
|
def build_P_prime(self, batch_C_prime):
|
|
""" Generate Grid from batch_C_prime [batch_size x F x 2] """
|
|
batch_size = batch_C_prime.size(0)
|
|
batch_inv_delta_C = self.inv_delta_C.repeat(batch_size, 1, 1)
|
|
batch_P_hat = self.P_hat.repeat(batch_size, 1, 1)
|
|
batch_C_prime_with_zeros = torch.cat((batch_C_prime, torch.zeros(
|
|
batch_size, 3, 2).float().to(device)), dim=1) # batch_size x F+3 x 2
|
|
batch_T = torch.bmm(batch_inv_delta_C, batch_C_prime_with_zeros) # batch_size x F+3 x 2
|
|
batch_P_prime = torch.bmm(batch_P_hat, batch_T) # batch_size x n x 2
|
|
return batch_P_prime # batch_size x n x 2
|