import os import sys import time import random import string import argparse import torch import torch.backends.cudnn as cudnn import torch.nn.init as init import torch.optim as optim import torch.utils.data import numpy as np from utils import CTCLabelConverter, AttnLabelConverter, Averager from dataset import hierarchical_dataset, AlignCollate, Batch_Balanced_Dataset from model import Model from test import validation device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def train(opt): """ dataset preparation """ if not opt.data_filtering_off: print('Filtering the images containing characters which are not in opt.character') print('Filtering the images whose label is longer than opt.batch_max_length') # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/master/dataset.py#L130 opt.select_data = opt.select_data.split('-') opt.batch_ratio = opt.batch_ratio.split('-') train_dataset = Batch_Balanced_Dataset(opt) AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD) valid_dataset = hierarchical_dataset(root=opt.valid_data, opt=opt) valid_loader = torch.utils.data.DataLoader( valid_dataset, batch_size=opt.batch_size, shuffle=True, # 'True' to check training progress with validation function. num_workers=int(opt.workers), collate_fn=AlignCollate_valid, pin_memory=True) print('-' * 80) """ model configuration """ if 'CTC' in opt.Prediction: converter = CTCLabelConverter(opt.character) else: converter = AttnLabelConverter(opt.character) opt.num_class = len(converter.character) if opt.rgb: opt.input_channel = 3 model = Model(opt) print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel, opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction) # weight initialization for name, param in model.named_parameters(): if 'localization_fc2' in name: print(f'Skip {name} as it is already initialized') continue try: if 'bias' in name: init.constant_(param, 0.0) elif 'weight' in name: init.kaiming_normal_(param) except Exception as e: # for batchnorm. if 'weight' in name: param.data.fill_(1) continue # data parallel for multi-GPU model = torch.nn.DataParallel(model).to(device) model.train() if opt.saved_model != '': print(f'loading pretrained model from {opt.saved_model}') if opt.FT: model.load_state_dict(torch.load(opt.saved_model), strict=False) else: model.load_state_dict(torch.load(opt.saved_model)) print("Model:") print(model) """ setup loss """ if 'CTC' in opt.Prediction: criterion = torch.nn.CTCLoss(zero_infinity=True).to(device) else: criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device) # ignore [GO] token = ignore index 0 # loss averager loss_avg = Averager() # filter that only require gradient decent filtered_parameters = [] params_num = [] for p in filter(lambda p: p.requires_grad, model.parameters()): filtered_parameters.append(p) params_num.append(np.prod(p.size())) print('Trainable params num : ', sum(params_num)) # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())] # setup optimizer if opt.adam: optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999)) else: optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps) print("Optimizer:") print(optimizer) """ final options """ # print(opt) with open(f'./saved_models/{opt.experiment_name}/opt.txt', 'a') as opt_file: opt_log = '------------ Options -------------\n' args = vars(opt) for k, v in args.items(): opt_log += f'{str(k)}: {str(v)}\n' opt_log += '---------------------------------------\n' print(opt_log) opt_file.write(opt_log) """ start training """ start_iter = 0 if opt.saved_model != '': start_iter = int(opt.saved_model.split('_')[-1].split('.')[0]) print(f'continue to train, start_iter: {start_iter}') start_time = time.time() best_accuracy = -1 best_norm_ED = 1e+6 i = start_iter while(True): # train part image_tensors, labels = train_dataset.get_batch() image = image_tensors.to(device) text, length = converter.encode(labels, batch_max_length=opt.batch_max_length) batch_size = image.size(0) if 'CTC' in opt.Prediction: preds = model(image, text).log_softmax(2) preds_size = torch.IntTensor([preds.size(1)] * batch_size) preds = preds.permute(1, 0, 2) # (ctc_a) For PyTorch 1.2.0 and 1.3.0. To avoid ctc_loss issue, disabled cudnn for the computation of the ctc_loss # https://github.com/jpuigcerver/PyLaia/issues/16 torch.backends.cudnn.enabled = False cost = criterion(preds, text.to(device), preds_size.to(device), length.to(device)) torch.backends.cudnn.enabled = True # # (ctc_b) To reproduce our pretrained model / paper, use our previous code (below code) instead of (ctc_a). # # With PyTorch 1.2.0, the below code occurs NAN, so you may use PyTorch 1.1.0. # # Thus, the result of CTCLoss is different in PyTorch 1.1.0 and PyTorch 1.2.0. # # See https://github.com/clovaai/deep-text-recognition-benchmark/issues/56#issuecomment-526490707 # cost = criterion(preds, text, preds_size, length) else: preds = model(image, text[:, :-1]) # align with Attention.forward target = text[:, 1:] # without [GO] Symbol cost = criterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1)) model.zero_grad() cost.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip) # gradient clipping with 5 (Default) optimizer.step() loss_avg.add(cost) # validation part if i % opt.valInterval == 0: elapsed_time = time.time() - start_time # for log with open(f'./saved_models/{opt.experiment_name}/log_train.txt', 'a') as log: model.eval() with torch.no_grad(): valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation( model, criterion, valid_loader, converter, opt) model.train() # training loss and validation loss loss_log = f'[{i}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}' print(loss_log) log.write(loss_log + '\n') loss_avg.reset() current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}' print(current_model_log) log.write(current_model_log + '\n') # keep best accuracy model (on valid dataset) if current_accuracy > best_accuracy: best_accuracy = current_accuracy torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_accuracy.pth') if current_norm_ED < best_norm_ED: best_norm_ED = current_norm_ED torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_norm_ED.pth') best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}' print(best_model_log) log.write(best_model_log + '\n') # show some predicted results print('-' * 80) print(f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F') log.write(f'{"Ground Truth":25s} | {"Prediction":25s} | {"Confidence Score"}\n') print('-' * 80) for gt, pred, confidence in zip(labels[:5], preds[:5], confidence_score[:5]): if 'Attn' in opt.Prediction: gt = gt[:gt.find('[s]')] pred = pred[:pred.find('[s]')] print(f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}') log.write(f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n') print('-' * 80) # save model per 1e+5 iter. if (i + 1) % 1e+5 == 0: torch.save( model.state_dict(), f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth') if i == opt.num_iter: print('end the training') sys.exit() i += 1 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--experiment_name', help='Where to store logs and models') parser.add_argument('--train_data', required=True, help='path to training dataset') parser.add_argument('--valid_data', required=True, help='path to validation dataset') parser.add_argument('--manualSeed', type=int, default=1111, help='for random seed setting') parser.add_argument('--workers', type=int, help='number of data loading workers', default=4) parser.add_argument('--batch_size', type=int, default=192, help='input batch size') parser.add_argument('--num_iter', type=int, default=300000, help='number of iterations to train for') parser.add_argument('--valInterval', type=int, default=2000, help='Interval between each validation') parser.add_argument('--saved_model', default='', help="path to model to continue training") parser.add_argument('--FT', action='store_true', help='whether to do fine-tuning') parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is Adadelta)') parser.add_argument('--lr', type=float, default=1, help='learning rate, default=1.0 for Adadelta') parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam. default=0.9') parser.add_argument('--rho', type=float, default=0.95, help='decay rate rho for Adadelta. default=0.95') parser.add_argument('--eps', type=float, default=1e-8, help='eps for Adadelta. default=1e-8') parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping value. default=5') """ Data processing """ parser.add_argument('--select_data', type=str, default='MJ-ST', help='select training data (default is MJ-ST, which means MJ and ST used as training data)') parser.add_argument('--batch_ratio', type=str, default='0.5-0.5', help='assign ratio for each selected data in the batch') parser.add_argument('--total_data_usage_ratio', type=str, default='1.0', help='total data usage ratio, this ratio is multiplied to total number of data.') parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length') parser.add_argument('--imgH', type=int, default=32, help='the height of the input image') parser.add_argument('--imgW', type=int, default=100, help='the width of the input image') parser.add_argument('--rgb', action='store_true', help='use rgb input') parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label') parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode') parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize') parser.add_argument('--data_filtering_off', action='store_true', help='for data_filtering_off mode') """ Model Architecture """ parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS') parser.add_argument('--FeatureExtraction', type=str, required=True, help='FeatureExtraction stage. VGG|RCNN|ResNet') parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM') parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. CTC|Attn') parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN') parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor') parser.add_argument('--output_channel', type=int, default=512, help='the number of output channel of Feature extractor') parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state') opt = parser.parse_args() if not opt.experiment_name: opt.experiment_name = f'{opt.Transformation}-{opt.FeatureExtraction}-{opt.SequenceModeling}-{opt.Prediction}' opt.experiment_name += f'-Seed{opt.manualSeed}' # print(opt.experiment_name) os.makedirs(f'./saved_models/{opt.experiment_name}', exist_ok=True) """ vocab / character number configuration """ if opt.sensitive: # opt.character += 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' opt.character = string.printable[:-6] # same with ASTER setting (use 94 char). """ Seed and GPU setting """ # print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) np.random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) torch.cuda.manual_seed(opt.manualSeed) cudnn.benchmark = True cudnn.deterministic = True opt.num_gpu = torch.cuda.device_count() # print('device count', opt.num_gpu) if opt.num_gpu > 1: print('------ Use multi-GPU setting ------') print('if you stuck too long time with multi-GPU setting, try to set --workers 0') # check multi-GPU issue https://github.com/clovaai/deep-text-recognition-benchmark/issues/1 opt.workers = opt.workers * opt.num_gpu opt.batch_size = opt.batch_size * opt.num_gpu """ previous version print('To equlize batch stats to 1-GPU setting, the batch_size is multiplied with num_gpu and multiplied batch_size is ', opt.batch_size) opt.batch_size = opt.batch_size * opt.num_gpu print('To equalize the number of epochs to 1-GPU setting, num_iter is divided with num_gpu by default.') If you dont care about it, just commnet out these line.) opt.num_iter = int(opt.num_iter / opt.num_gpu) """ train(opt)