Mapping loaded, pretrained model to actual device. Required for CPU only inference.
This commit is contained in:
parent
603d463e83
commit
be128d4d9f
2
demo.py
2
demo.py
|
@ -30,7 +30,7 @@ def demo(opt):
|
|||
|
||||
# load model
|
||||
print('loading pretrained model from %s' % opt.saved_model)
|
||||
model.load_state_dict(torch.load(opt.saved_model))
|
||||
model.load_state_dict(torch.load(opt.saved_model, map_location=device))
|
||||
|
||||
# prepare data. two demo images from https://github.com/bgshih/crnn#run-demo
|
||||
AlignCollate_demo = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
|
||||
|
|
2
test.py
2
test.py
|
@ -165,7 +165,7 @@ def test(opt):
|
|||
|
||||
# load model
|
||||
print('loading pretrained model from %s' % opt.saved_model)
|
||||
model.load_state_dict(torch.load(opt.saved_model))
|
||||
model.load_state_dict(torch.load(opt.saved_model, map_location=device))
|
||||
opt.experiment_name = '_'.join(opt.saved_model.split('/')[1:])
|
||||
# print(model)
|
||||
|
||||
|
|
Loading…
Reference in New Issue