20 lines
746 B
Python
20 lines
746 B
Python
|
import torch.nn as nn
|
||
|
|
||
|
|
||
|
class BidirectionalLSTM(nn.Module):
|
||
|
|
||
|
def __init__(self, input_size, hidden_size, output_size):
|
||
|
super(BidirectionalLSTM, self).__init__()
|
||
|
self.rnn = nn.LSTM(input_size, hidden_size, bidirectional=True, batch_first=True)
|
||
|
self.linear = nn.Linear(hidden_size * 2, output_size)
|
||
|
|
||
|
def forward(self, input):
|
||
|
"""
|
||
|
input : visual feature [batch_size x T x input_size]
|
||
|
output : contextual feature [batch_size x T x output_size]
|
||
|
"""
|
||
|
self.rnn.flatten_parameters()
|
||
|
recurrent, _ = self.rnn(input) # batch_size x T x input_size -> batch_size x T x (2*hidden_size)
|
||
|
output = self.linear(recurrent) # batch_size x T x output_size
|
||
|
return output
|