deep-text-recognition-bench.../modules/sequence_modeling.py

20 lines
746 B
Python
Raw Normal View History

2019-04-05 18:45:29 +08:00
import torch.nn as nn
class BidirectionalLSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(BidirectionalLSTM, self).__init__()
self.rnn = nn.LSTM(input_size, hidden_size, bidirectional=True, batch_first=True)
self.linear = nn.Linear(hidden_size * 2, output_size)
def forward(self, input):
"""
input : visual feature [batch_size x T x input_size]
output : contextual feature [batch_size x T x output_size]
"""
self.rnn.flatten_parameters()
recurrent, _ = self.rnn(input) # batch_size x T x input_size -> batch_size x T x (2*hidden_size)
output = self.linear(recurrent) # batch_size x T x output_size
return output