darknet/src/coco.c

418 lines
14 KiB
C

#include <stdio.h>
#include "network.h"
#include "detection_layer.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
#include "box.h"
#include "demo.h"
char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"};
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
void train_coco(char *cfgfile, char *weightfile)
{
//char *train_images = "/home/pjreddie/data/voc/test/train.txt";
//char *train_images = "/home/pjreddie/data/coco/train.txt";
char *train_images = "data/coco.trainval.txt";
//char *train_images = "data/bags.train.list";
char* backup_directory = "backup/";
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = -1;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = net.batch*net.subdivisions;
int i = *net.seen/imgs;
data train, buffer;
layer l = net.layers[net.n - 1];
int side = l.side;
int classes = l.classes;
float jitter = l.jitter;
list *plist = get_paths(train_images);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.classes = classes;
args.jitter = jitter;
args.num_boxes = side;
args.d = &buffer;
args.type = REGION_DATA;
args.angle = net.angle;
args.exposure = net.exposure;
args.saturation = net.saturation;
args.hue = net.hue;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
//while(i*imgs < N*120){
while(get_current_batch(net) < net.max_batches){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
/*
image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
image copy = copy_image(im);
draw_coco(copy, train.y.vals[113], 7, "truth");
cvWaitKey(0);
free_image(copy);
*/
time=clock();
float loss = train_network(net, train);
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0 || (i < 1000 && i%100 == 0)){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
}
free_data(train);
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
}
void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
{
int i, j;
for(i = 0; i < num_boxes; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
float ymax = boxes[i].y + boxes[i].h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
if (xmax > w) xmax = w;
if (ymax > h) ymax = h;
float bx = xmin;
float by = ymin;
float bw = xmax - xmin;
float bh = ymax - ymin;
for(j = 0; j < classes; ++j){
if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
}
}
}
int get_coco_image_id(char *filename)
{
char *p = strrchr(filename, '_');
return atoi(p+1);
}
void validate_coco(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
char *base = "results/";
list *plist = get_paths("data/coco_val_5k.list");
//list *plist = get_paths("/home/pjreddie/data/people-art/test.txt");
//list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
char **paths = (char **)list_to_array(plist);
layer l = net.layers[net.n-1];
int classes = l.classes;
int side = l.side;
int j;
char buff[1024];
snprintf(buff, 1024, "%s/coco_results.json", base);
FILE *fp = fopen(buff, "w");
fprintf(fp, "[\n");
box* boxes = (box*)xcalloc(side * side * l.n, sizeof(box));
float** probs = (float**)xcalloc(side * side * l.n, sizeof(float*));
for(j = 0; j < side*side*l.n; ++j) probs[j] = (float*)xcalloc(classes, sizeof(float));
int m = plist->size;
int i=0;
int t;
float thresh = .01;
int nms = 1;
float iou_thresh = .5;
int nthreads = 8;
image* val = (image*)xcalloc(nthreads, sizeof(image));
image* val_resized = (image*)xcalloc(nthreads, sizeof(image));
image* buf = (image*)xcalloc(nthreads, sizeof(image));
image* buf_resized = (image*)xcalloc(nthreads, sizeof(image));
pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t));
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.type = IMAGE_DATA;
for(t = 0; t < nthreads; ++t){
args.path = paths[i+t];
args.im = &buf[t];
args.resized = &buf_resized[t];
thr[t] = load_data_in_thread(args);
}
time_t start = time(0);
for(i = nthreads; i < m+nthreads; i += nthreads){
fprintf(stderr, "%d\n", i);
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
pthread_join(thr[t], 0);
val[t] = buf[t];
val_resized[t] = buf_resized[t];
}
for(t = 0; t < nthreads && i+t < m; ++t){
args.path = paths[i+t];
args.im = &buf[t];
args.resized = &buf_resized[t];
thr[t] = load_data_in_thread(args);
}
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
char *path = paths[i+t-nthreads];
int image_id = get_coco_image_id(path);
float *X = val_resized[t].data;
network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
get_detection_boxes(l, w, h, thresh, probs, boxes, 0);
if (nms) do_nms_sort_v2(boxes, probs, side*side*l.n, classes, iou_thresh);
print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h);
free_image(val[t]);
free_image(val_resized[t]);
}
}
#ifdef WIN32
fseek(fp, -3, SEEK_CUR);
#else
fseek(fp, -2, SEEK_CUR);
#endif
fprintf(fp, "\n]\n");
fclose(fp);
if (val) free(val);
if (val_resized) free(val_resized);
if (buf) free(buf);
if (buf_resized) free(buf_resized);
if (thr) free(thr);
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
void validate_coco_recall(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
char *base = "results/comp4_det_test_";
list* plist = get_paths("data/voc/test/2007_test.txt");
char **paths = (char **)list_to_array(plist);
layer l = net.layers[net.n-1];
int classes = l.classes;
int side = l.side;
int j, k;
/* unused code,why?
FILE** fps = (FILE**)xcalloc(classes, sizeof(FILE*));
for(j = 0; j < classes; ++j){
char buff[1024];
snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]);
fps[j] = fopen(buff, "w");
}
*/
box* boxes = (box*)xcalloc(side * side * l.n, sizeof(box));
float** probs = (float**)xcalloc(side * side * l.n, sizeof(float*));
for(j = 0; j < side*side*l.n; ++j) {
probs[j] = (float*)xcalloc(classes, sizeof(float));
}
int m = plist->size;
int i=0;
float thresh = .001;
int nms = 0;
float iou_thresh = .5;
float nms_thresh = .5;
int total = 0;
int correct = 0;
int proposals = 0;
float avg_iou = 0;
for(i = 0; i < m; ++i){
char *path = paths[i];
image orig = load_image_color(path, 0, 0);
image sized = resize_image(orig, net.w, net.h);
char *id = basecfg(path);
network_predict(net, sized.data);
get_detection_boxes(l, 1, 1, thresh, probs, boxes, 1);
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
char labelpath[4096];
replace_image_to_label(path, labelpath);
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
for(k = 0; k < side*side*l.n; ++k){
if(probs[k][0] > thresh){
++proposals;
}
}
for (j = 0; j < num_labels; ++j) {
++total;
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
float best_iou = 0;
for(k = 0; k < side*side*l.n; ++k){
float iou = box_iou(boxes[k], t);
if(probs[k][0] > thresh && iou > best_iou){
best_iou = iou;
}
}
avg_iou += best_iou;
if(best_iou > iou_thresh){
++correct;
}
}
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
//if (fps) free(fps);
if (id) free(id);
free(truth);
free_image(orig);
free_image(sized);
}
free(boxes);
for(j = 0; j < side*side*l.n; ++j) {
free(probs[j]);
}
free(probs);
}
void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
{
image **alphabet = load_alphabet();
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
detection_layer l = net.layers[net.n-1];
set_batch_network(&net, 1);
srand(2222222);
float nms = .4;
clock_t time;
char buff[256];
char *input = buff;
int j;
box* boxes = (box*)xcalloc(l.side * l.side * l.n, sizeof(box));
float** probs = (float**)xcalloc(l.side * l.side * l.n, sizeof(float*));
for(j = 0; j < l.side*l.side*l.n; ++j) {
probs[j] = (float*)xcalloc(l.classes, sizeof(float));
}
while(1){
if(filename){
strncpy(input, filename, 256);
} else {
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) break;
strtok(input, "\n");
}
image im = load_image_color(input,0,0);
image sized = resize_image(im, net.w, net.h);
float *X = sized.data;
time=clock();
network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0);
if (nms) do_nms_sort_v2(boxes, probs, l.side*l.side*l.n, l.classes, nms);
draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, alphabet, 80);
save_image(im, "prediction");
show_image(im, "predictions");
free_image(im);
free_image(sized);
free_alphabet(alphabet);
wait_until_press_key_cv();
destroy_all_windows_cv();
if (filename) break;
}
free(boxes);
for(j = 0; j < l.side*l.side*l.n; ++j) {
free(probs[j]);
}
free(probs);
}
void run_coco(int argc, char **argv)
{
int dont_show = find_arg(argc, argv, "-dont_show");
int mjpeg_port = find_int_arg(argc, argv, "-mjpeg_port", -1);
int json_port = find_int_arg(argc, argv, "-json_port", -1);
char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
char *prefix = find_char_arg(argc, argv, "-prefix", 0);
float thresh = find_float_arg(argc, argv, "-thresh", .2);
float hier_thresh = find_float_arg(argc, argv, "-hier", .5);
int cam_index = find_int_arg(argc, argv, "-c", 0);
int frame_skip = find_int_arg(argc, argv, "-s", 0);
int ext_output = find_arg(argc, argv, "-ext_output");
char *json_file_output = find_char_arg(argc, argv, "-json_file_output", 0);
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
char *filename = (argc > 5) ? argv[5]: 0;
if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename, thresh);
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights);
else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, hier_thresh, cam_index, filename, coco_classes, 80, 1, frame_skip,
prefix, out_filename, mjpeg_port, 0, json_port, dont_show, ext_output, 0, 0, 0, 0, 0, json_file_output);
}