mirror of https://github.com/AlexeyAB/darknet.git
1029 lines
22 KiB
C
1029 lines
22 KiB
C
#ifndef DARKNET_API
|
|
#define DARKNET_API
|
|
|
|
#if defined(_MSC_VER) && _MSC_VER < 1900
|
|
#define inline __inline
|
|
#endif
|
|
|
|
#if defined(DEBUG) && !defined(_CRTDBG_MAP_ALLOC)
|
|
#define _CRTDBG_MAP_ALLOC
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <assert.h>
|
|
#include <pthread.h>
|
|
|
|
#ifndef LIB_API
|
|
#ifdef LIB_EXPORTS
|
|
#if defined(_MSC_VER)
|
|
#define LIB_API __declspec(dllexport)
|
|
#else
|
|
#define LIB_API __attribute__((visibility("default")))
|
|
#endif
|
|
#else
|
|
#if defined(_MSC_VER)
|
|
#define LIB_API
|
|
#else
|
|
#define LIB_API
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#define SECRET_NUM -1234
|
|
|
|
typedef enum { UNUSED_DEF_VAL } UNUSED_ENUM_TYPE;
|
|
|
|
#ifdef GPU
|
|
|
|
#include <cuda_runtime.h>
|
|
#include <curand.h>
|
|
#include <cublas_v2.h>
|
|
|
|
#ifdef CUDNN
|
|
#include <cudnn.h>
|
|
#endif // CUDNN
|
|
#endif // GPU
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
struct network;
|
|
typedef struct network network;
|
|
|
|
struct network_state;
|
|
typedef struct network_state network_state;
|
|
|
|
struct layer;
|
|
typedef struct layer layer;
|
|
|
|
struct image;
|
|
typedef struct image image;
|
|
|
|
struct detection;
|
|
typedef struct detection detection;
|
|
|
|
struct load_args;
|
|
typedef struct load_args load_args;
|
|
|
|
struct data;
|
|
typedef struct data data;
|
|
|
|
struct metadata;
|
|
typedef struct metadata metadata;
|
|
|
|
struct tree;
|
|
typedef struct tree tree;
|
|
|
|
extern int gpu_index;
|
|
|
|
// option_list.h
|
|
typedef struct metadata {
|
|
int classes;
|
|
char **names;
|
|
} metadata;
|
|
|
|
|
|
// tree.h
|
|
typedef struct tree {
|
|
int *leaf;
|
|
int n;
|
|
int *parent;
|
|
int *child;
|
|
int *group;
|
|
char **name;
|
|
|
|
int groups;
|
|
int *group_size;
|
|
int *group_offset;
|
|
} tree;
|
|
|
|
|
|
// activations.h
|
|
typedef enum {
|
|
LOGISTIC, RELU, RELU6, RELIE, LINEAR, RAMP, TANH, PLSE, LEAKY, ELU, LOGGY, STAIR, HARDTAN, LHTAN, SELU, GELU, SWISH, MISH, NORM_CHAN, NORM_CHAN_SOFTMAX, NORM_CHAN_SOFTMAX_MAXVAL
|
|
}ACTIVATION;
|
|
|
|
// parser.h
|
|
typedef enum {
|
|
IOU, GIOU, MSE, DIOU, CIOU
|
|
} IOU_LOSS;
|
|
|
|
// parser.h
|
|
typedef enum {
|
|
DEFAULT_NMS, GREEDY_NMS, DIOU_NMS, CORNERS_NMS
|
|
} NMS_KIND;
|
|
|
|
// parser.h
|
|
typedef enum {
|
|
YOLO_CENTER = 1 << 0, YOLO_LEFT_TOP = 1 << 1, YOLO_RIGHT_BOTTOM = 1 << 2
|
|
} YOLO_POINT;
|
|
|
|
// parser.h
|
|
typedef enum {
|
|
NO_WEIGHTS, PER_FEATURE, PER_CHANNEL
|
|
} WEIGHTS_TYPE_T;
|
|
|
|
// parser.h
|
|
typedef enum {
|
|
NO_NORMALIZATION, RELU_NORMALIZATION, SOFTMAX_NORMALIZATION
|
|
} WEIGHTS_NORMALIZATION_T;
|
|
|
|
// image.h
|
|
typedef enum{
|
|
PNG, BMP, TGA, JPG
|
|
} IMTYPE;
|
|
|
|
// activations.h
|
|
typedef enum{
|
|
MULT, ADD, SUB, DIV
|
|
} BINARY_ACTIVATION;
|
|
|
|
// layer.h
|
|
typedef enum {
|
|
CONVOLUTIONAL,
|
|
DECONVOLUTIONAL,
|
|
CONNECTED,
|
|
MAXPOOL,
|
|
LOCAL_AVGPOOL,
|
|
SOFTMAX,
|
|
DETECTION,
|
|
DROPOUT,
|
|
CROP,
|
|
ROUTE,
|
|
COST,
|
|
NORMALIZATION,
|
|
AVGPOOL,
|
|
LOCAL,
|
|
SHORTCUT,
|
|
SCALE_CHANNELS,
|
|
SAM,
|
|
ACTIVE,
|
|
RNN,
|
|
GRU,
|
|
LSTM,
|
|
CONV_LSTM,
|
|
CRNN,
|
|
BATCHNORM,
|
|
NETWORK,
|
|
XNOR,
|
|
REGION,
|
|
YOLO,
|
|
GAUSSIAN_YOLO,
|
|
ISEG,
|
|
REORG,
|
|
REORG_OLD,
|
|
UPSAMPLE,
|
|
LOGXENT,
|
|
L2NORM,
|
|
EMPTY,
|
|
BLANK
|
|
} LAYER_TYPE;
|
|
|
|
// layer.h
|
|
typedef enum{
|
|
SSE, MASKED, L1, SEG, SMOOTH,WGAN
|
|
} COST_TYPE;
|
|
|
|
// layer.h
|
|
typedef struct update_args {
|
|
int batch;
|
|
float learning_rate;
|
|
float momentum;
|
|
float decay;
|
|
int adam;
|
|
float B1;
|
|
float B2;
|
|
float eps;
|
|
int t;
|
|
} update_args;
|
|
|
|
// layer.h
|
|
struct layer {
|
|
LAYER_TYPE type;
|
|
ACTIVATION activation;
|
|
COST_TYPE cost_type;
|
|
void(*forward) (struct layer, struct network_state);
|
|
void(*backward) (struct layer, struct network_state);
|
|
void(*update) (struct layer, int, float, float, float);
|
|
void(*forward_gpu) (struct layer, struct network_state);
|
|
void(*backward_gpu) (struct layer, struct network_state);
|
|
void(*update_gpu) (struct layer, int, float, float, float, float);
|
|
layer *share_layer;
|
|
int train;
|
|
int avgpool;
|
|
int batch_normalize;
|
|
int shortcut;
|
|
int batch;
|
|
int dynamic_minibatch;
|
|
int forced;
|
|
int flipped;
|
|
int inputs;
|
|
int outputs;
|
|
int nweights;
|
|
int nbiases;
|
|
int extra;
|
|
int truths;
|
|
int h, w, c;
|
|
int out_h, out_w, out_c;
|
|
int n;
|
|
int max_boxes;
|
|
int groups;
|
|
int group_id;
|
|
int size;
|
|
int side;
|
|
int stride;
|
|
int stride_x;
|
|
int stride_y;
|
|
int dilation;
|
|
int antialiasing;
|
|
int maxpool_depth;
|
|
int out_channels;
|
|
int reverse;
|
|
int flatten;
|
|
int spatial;
|
|
int pad;
|
|
int sqrt;
|
|
int flip;
|
|
int index;
|
|
int scale_wh;
|
|
int binary;
|
|
int xnor;
|
|
int peephole;
|
|
int use_bin_output;
|
|
int keep_delta_gpu;
|
|
int optimized_memory;
|
|
int steps;
|
|
int state_constrain;
|
|
int hidden;
|
|
int truth;
|
|
float smooth;
|
|
float dot;
|
|
int deform;
|
|
int sway;
|
|
int rotate;
|
|
int stretch;
|
|
int stretch_sway;
|
|
float angle;
|
|
float jitter;
|
|
float saturation;
|
|
float exposure;
|
|
float shift;
|
|
float ratio;
|
|
float learning_rate_scale;
|
|
float clip;
|
|
int focal_loss;
|
|
float *classes_multipliers;
|
|
float label_smooth_eps;
|
|
int noloss;
|
|
int softmax;
|
|
int classes;
|
|
int coords;
|
|
int background;
|
|
int rescore;
|
|
int objectness;
|
|
int does_cost;
|
|
int joint;
|
|
int noadjust;
|
|
int reorg;
|
|
int log;
|
|
int tanh;
|
|
int *mask;
|
|
int total;
|
|
float bflops;
|
|
|
|
int adam;
|
|
float B1;
|
|
float B2;
|
|
float eps;
|
|
|
|
int t;
|
|
|
|
float alpha;
|
|
float beta;
|
|
float kappa;
|
|
|
|
float coord_scale;
|
|
float object_scale;
|
|
float noobject_scale;
|
|
float mask_scale;
|
|
float class_scale;
|
|
int bias_match;
|
|
float random;
|
|
float ignore_thresh;
|
|
float truth_thresh;
|
|
float iou_thresh;
|
|
float thresh;
|
|
float focus;
|
|
int classfix;
|
|
int absolute;
|
|
int assisted_excitation;
|
|
|
|
int onlyforward;
|
|
int stopbackward;
|
|
int train_only_bn;
|
|
int dont_update;
|
|
int burnin_update;
|
|
int dontload;
|
|
int dontsave;
|
|
int dontloadscales;
|
|
int numload;
|
|
|
|
float temperature;
|
|
float probability;
|
|
float dropblock_size_rel;
|
|
int dropblock_size_abs;
|
|
int dropblock;
|
|
float scale;
|
|
|
|
int receptive_w;
|
|
int receptive_h;
|
|
int receptive_w_scale;
|
|
int receptive_h_scale;
|
|
|
|
char * cweights;
|
|
int * indexes;
|
|
int * input_layers;
|
|
int * input_sizes;
|
|
float **layers_output;
|
|
float **layers_delta;
|
|
WEIGHTS_TYPE_T weights_type;
|
|
WEIGHTS_NORMALIZATION_T weights_normalizion;
|
|
int * map;
|
|
int * counts;
|
|
float ** sums;
|
|
float * rand;
|
|
float * cost;
|
|
float * state;
|
|
float * prev_state;
|
|
float * forgot_state;
|
|
float * forgot_delta;
|
|
float * state_delta;
|
|
float * combine_cpu;
|
|
float * combine_delta_cpu;
|
|
|
|
float *concat;
|
|
float *concat_delta;
|
|
|
|
float *binary_weights;
|
|
|
|
float *biases;
|
|
float *bias_updates;
|
|
|
|
float *scales;
|
|
float *scale_updates;
|
|
|
|
float *weights;
|
|
float *weight_updates;
|
|
|
|
float scale_x_y;
|
|
float max_delta;
|
|
float uc_normalizer;
|
|
float iou_normalizer;
|
|
float cls_normalizer;
|
|
IOU_LOSS iou_loss;
|
|
IOU_LOSS iou_thresh_kind;
|
|
NMS_KIND nms_kind;
|
|
float beta_nms;
|
|
YOLO_POINT yolo_point;
|
|
|
|
char *align_bit_weights_gpu;
|
|
float *mean_arr_gpu;
|
|
float *align_workspace_gpu;
|
|
float *transposed_align_workspace_gpu;
|
|
int align_workspace_size;
|
|
|
|
char *align_bit_weights;
|
|
float *mean_arr;
|
|
int align_bit_weights_size;
|
|
int lda_align;
|
|
int new_lda;
|
|
int bit_align;
|
|
|
|
float *col_image;
|
|
float * delta;
|
|
float * output;
|
|
float * activation_input;
|
|
int delta_pinned;
|
|
int output_pinned;
|
|
float * loss;
|
|
float * squared;
|
|
float * norms;
|
|
|
|
float * spatial_mean;
|
|
float * mean;
|
|
float * variance;
|
|
|
|
float * mean_delta;
|
|
float * variance_delta;
|
|
|
|
float * rolling_mean;
|
|
float * rolling_variance;
|
|
|
|
float * x;
|
|
float * x_norm;
|
|
|
|
float * m;
|
|
float * v;
|
|
|
|
float * bias_m;
|
|
float * bias_v;
|
|
float * scale_m;
|
|
float * scale_v;
|
|
|
|
|
|
float *z_cpu;
|
|
float *r_cpu;
|
|
float *h_cpu;
|
|
float *stored_h_cpu;
|
|
float * prev_state_cpu;
|
|
|
|
float *temp_cpu;
|
|
float *temp2_cpu;
|
|
float *temp3_cpu;
|
|
|
|
float *dh_cpu;
|
|
float *hh_cpu;
|
|
float *prev_cell_cpu;
|
|
float *cell_cpu;
|
|
float *f_cpu;
|
|
float *i_cpu;
|
|
float *g_cpu;
|
|
float *o_cpu;
|
|
float *c_cpu;
|
|
float *stored_c_cpu;
|
|
float *dc_cpu;
|
|
|
|
float *binary_input;
|
|
uint32_t *bin_re_packed_input;
|
|
char *t_bit_input;
|
|
|
|
struct layer *input_layer;
|
|
struct layer *self_layer;
|
|
struct layer *output_layer;
|
|
|
|
struct layer *reset_layer;
|
|
struct layer *update_layer;
|
|
struct layer *state_layer;
|
|
|
|
struct layer *input_gate_layer;
|
|
struct layer *state_gate_layer;
|
|
struct layer *input_save_layer;
|
|
struct layer *state_save_layer;
|
|
struct layer *input_state_layer;
|
|
struct layer *state_state_layer;
|
|
|
|
struct layer *input_z_layer;
|
|
struct layer *state_z_layer;
|
|
|
|
struct layer *input_r_layer;
|
|
struct layer *state_r_layer;
|
|
|
|
struct layer *input_h_layer;
|
|
struct layer *state_h_layer;
|
|
|
|
struct layer *wz;
|
|
struct layer *uz;
|
|
struct layer *wr;
|
|
struct layer *ur;
|
|
struct layer *wh;
|
|
struct layer *uh;
|
|
struct layer *uo;
|
|
struct layer *wo;
|
|
struct layer *vo;
|
|
struct layer *uf;
|
|
struct layer *wf;
|
|
struct layer *vf;
|
|
struct layer *ui;
|
|
struct layer *wi;
|
|
struct layer *vi;
|
|
struct layer *ug;
|
|
struct layer *wg;
|
|
|
|
tree *softmax_tree;
|
|
|
|
size_t workspace_size;
|
|
|
|
//#ifdef GPU
|
|
int *indexes_gpu;
|
|
|
|
float *z_gpu;
|
|
float *r_gpu;
|
|
float *h_gpu;
|
|
float *stored_h_gpu;
|
|
|
|
float *temp_gpu;
|
|
float *temp2_gpu;
|
|
float *temp3_gpu;
|
|
|
|
float *dh_gpu;
|
|
float *hh_gpu;
|
|
float *prev_cell_gpu;
|
|
float *prev_state_gpu;
|
|
float *last_prev_state_gpu;
|
|
float *last_prev_cell_gpu;
|
|
float *cell_gpu;
|
|
float *f_gpu;
|
|
float *i_gpu;
|
|
float *g_gpu;
|
|
float *o_gpu;
|
|
float *c_gpu;
|
|
float *stored_c_gpu;
|
|
float *dc_gpu;
|
|
|
|
// adam
|
|
float *m_gpu;
|
|
float *v_gpu;
|
|
float *bias_m_gpu;
|
|
float *scale_m_gpu;
|
|
float *bias_v_gpu;
|
|
float *scale_v_gpu;
|
|
|
|
float * combine_gpu;
|
|
float * combine_delta_gpu;
|
|
|
|
float * forgot_state_gpu;
|
|
float * forgot_delta_gpu;
|
|
float * state_gpu;
|
|
float * state_delta_gpu;
|
|
float * gate_gpu;
|
|
float * gate_delta_gpu;
|
|
float * save_gpu;
|
|
float * save_delta_gpu;
|
|
float * concat_gpu;
|
|
float * concat_delta_gpu;
|
|
|
|
float *binary_input_gpu;
|
|
float *binary_weights_gpu;
|
|
float *bin_conv_shortcut_in_gpu;
|
|
float *bin_conv_shortcut_out_gpu;
|
|
|
|
float * mean_gpu;
|
|
float * variance_gpu;
|
|
float * m_cbn_avg_gpu;
|
|
float * v_cbn_avg_gpu;
|
|
|
|
float * rolling_mean_gpu;
|
|
float * rolling_variance_gpu;
|
|
|
|
float * variance_delta_gpu;
|
|
float * mean_delta_gpu;
|
|
|
|
float * col_image_gpu;
|
|
|
|
float * x_gpu;
|
|
float * x_norm_gpu;
|
|
float * weights_gpu;
|
|
float * weight_updates_gpu;
|
|
float * weight_deform_gpu;
|
|
float * weight_change_gpu;
|
|
|
|
float * weights_gpu16;
|
|
float * weight_updates_gpu16;
|
|
|
|
float * biases_gpu;
|
|
float * bias_updates_gpu;
|
|
float * bias_change_gpu;
|
|
|
|
float * scales_gpu;
|
|
float * scale_updates_gpu;
|
|
float * scale_change_gpu;
|
|
|
|
float * input_antialiasing_gpu;
|
|
float * output_gpu;
|
|
float * activation_input_gpu;
|
|
float * loss_gpu;
|
|
float * delta_gpu;
|
|
float * rand_gpu;
|
|
float * drop_blocks_scale;
|
|
float * drop_blocks_scale_gpu;
|
|
float * squared_gpu;
|
|
float * norms_gpu;
|
|
|
|
float *gt_gpu;
|
|
float *a_avg_gpu;
|
|
|
|
int *input_sizes_gpu;
|
|
float **layers_output_gpu;
|
|
float **layers_delta_gpu;
|
|
#ifdef CUDNN
|
|
cudnnTensorDescriptor_t srcTensorDesc, dstTensorDesc;
|
|
cudnnTensorDescriptor_t srcTensorDesc16, dstTensorDesc16;
|
|
cudnnTensorDescriptor_t dsrcTensorDesc, ddstTensorDesc;
|
|
cudnnTensorDescriptor_t dsrcTensorDesc16, ddstTensorDesc16;
|
|
cudnnTensorDescriptor_t normTensorDesc, normDstTensorDesc, normDstTensorDescF16;
|
|
cudnnFilterDescriptor_t weightDesc, weightDesc16;
|
|
cudnnFilterDescriptor_t dweightDesc, dweightDesc16;
|
|
cudnnConvolutionDescriptor_t convDesc;
|
|
cudnnConvolutionFwdAlgo_t fw_algo, fw_algo16;
|
|
cudnnConvolutionBwdDataAlgo_t bd_algo, bd_algo16;
|
|
cudnnConvolutionBwdFilterAlgo_t bf_algo, bf_algo16;
|
|
cudnnPoolingDescriptor_t poolingDesc;
|
|
#else // CUDNN
|
|
void* srcTensorDesc, *dstTensorDesc;
|
|
void* srcTensorDesc16, *dstTensorDesc16;
|
|
void* dsrcTensorDesc, *ddstTensorDesc;
|
|
void* dsrcTensorDesc16, *ddstTensorDesc16;
|
|
void* normTensorDesc, *normDstTensorDesc, *normDstTensorDescF16;
|
|
void* weightDesc, *weightDesc16;
|
|
void* dweightDesc, *dweightDesc16;
|
|
void* convDesc;
|
|
UNUSED_ENUM_TYPE fw_algo, fw_algo16;
|
|
UNUSED_ENUM_TYPE bd_algo, bd_algo16;
|
|
UNUSED_ENUM_TYPE bf_algo, bf_algo16;
|
|
void* poolingDesc;
|
|
#endif // CUDNN
|
|
//#endif // GPU
|
|
};
|
|
|
|
|
|
// network.h
|
|
typedef enum {
|
|
CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM, SGDR
|
|
} learning_rate_policy;
|
|
|
|
// network.h
|
|
typedef struct network {
|
|
int n;
|
|
int batch;
|
|
uint64_t *seen;
|
|
int *cur_iteration;
|
|
float loss_scale;
|
|
int *t;
|
|
float epoch;
|
|
int subdivisions;
|
|
layer *layers;
|
|
float *output;
|
|
learning_rate_policy policy;
|
|
int benchmark_layers;
|
|
|
|
float learning_rate;
|
|
float learning_rate_min;
|
|
float learning_rate_max;
|
|
int batches_per_cycle;
|
|
int batches_cycle_mult;
|
|
float momentum;
|
|
float decay;
|
|
float gamma;
|
|
float scale;
|
|
float power;
|
|
int time_steps;
|
|
int step;
|
|
int max_batches;
|
|
int num_boxes;
|
|
int train_images_num;
|
|
float *seq_scales;
|
|
float *scales;
|
|
int *steps;
|
|
int num_steps;
|
|
int burn_in;
|
|
int cudnn_half;
|
|
|
|
int adam;
|
|
float B1;
|
|
float B2;
|
|
float eps;
|
|
|
|
int inputs;
|
|
int outputs;
|
|
int truths;
|
|
int notruth;
|
|
int h, w, c;
|
|
int max_crop;
|
|
int min_crop;
|
|
float max_ratio;
|
|
float min_ratio;
|
|
int center;
|
|
int flip; // horizontal flip 50% probability augmentaiont for classifier training (default = 1)
|
|
int gaussian_noise;
|
|
int blur;
|
|
int mixup;
|
|
float label_smooth_eps;
|
|
int resize_step;
|
|
int attention;
|
|
int adversarial;
|
|
float adversarial_lr;
|
|
int letter_box;
|
|
float angle;
|
|
float aspect;
|
|
float exposure;
|
|
float saturation;
|
|
float hue;
|
|
int random;
|
|
int track;
|
|
int augment_speed;
|
|
int sequential_subdivisions;
|
|
int init_sequential_subdivisions;
|
|
int current_subdivision;
|
|
int try_fix_nan;
|
|
|
|
int gpu_index;
|
|
tree *hierarchy;
|
|
|
|
float *input;
|
|
float *truth;
|
|
float *delta;
|
|
float *workspace;
|
|
int train;
|
|
int index;
|
|
float *cost;
|
|
float clip;
|
|
|
|
//#ifdef GPU
|
|
//float *input_gpu;
|
|
//float *truth_gpu;
|
|
float *delta_gpu;
|
|
float *output_gpu;
|
|
|
|
float *input_state_gpu;
|
|
float *input_pinned_cpu;
|
|
int input_pinned_cpu_flag;
|
|
|
|
float **input_gpu;
|
|
float **truth_gpu;
|
|
float **input16_gpu;
|
|
float **output16_gpu;
|
|
size_t *max_input16_size;
|
|
size_t *max_output16_size;
|
|
int wait_stream;
|
|
|
|
float *global_delta_gpu;
|
|
float *state_delta_gpu;
|
|
size_t max_delta_gpu_size;
|
|
//#endif // GPU
|
|
int optimized_memory;
|
|
int dynamic_minibatch;
|
|
size_t workspace_size_limit;
|
|
} network;
|
|
|
|
// network.h
|
|
typedef struct network_state {
|
|
float *truth;
|
|
float *input;
|
|
float *delta;
|
|
float *workspace;
|
|
int train;
|
|
int index;
|
|
network net;
|
|
} network_state;
|
|
|
|
//typedef struct {
|
|
// int w;
|
|
// int h;
|
|
// float scale;
|
|
// float rad;
|
|
// float dx;
|
|
// float dy;
|
|
// float aspect;
|
|
//} augment_args;
|
|
|
|
// image.h
|
|
typedef struct image {
|
|
int w;
|
|
int h;
|
|
int c;
|
|
float *data;
|
|
} image;
|
|
|
|
//typedef struct {
|
|
// int w;
|
|
// int h;
|
|
// int c;
|
|
// float *data;
|
|
//} image;
|
|
|
|
// box.h
|
|
typedef struct box {
|
|
float x, y, w, h;
|
|
} box;
|
|
|
|
// box.h
|
|
typedef struct boxabs {
|
|
float left, right, top, bot;
|
|
} boxabs;
|
|
|
|
// box.h
|
|
typedef struct dxrep {
|
|
float dt, db, dl, dr;
|
|
} dxrep;
|
|
|
|
// box.h
|
|
typedef struct ious {
|
|
float iou, giou, diou, ciou;
|
|
dxrep dx_iou;
|
|
dxrep dx_giou;
|
|
} ious;
|
|
|
|
|
|
// box.h
|
|
typedef struct detection{
|
|
box bbox;
|
|
int classes;
|
|
float *prob;
|
|
float *mask;
|
|
float objectness;
|
|
int sort_class;
|
|
float *uc; // Gaussian_YOLOv3 - tx,ty,tw,th uncertainty
|
|
int points; // bit-0 - center, bit-1 - top-left-corner, bit-2 - bottom-right-corner
|
|
} detection;
|
|
|
|
// network.c -batch inference
|
|
typedef struct det_num_pair {
|
|
int num;
|
|
detection *dets;
|
|
} det_num_pair, *pdet_num_pair;
|
|
|
|
// matrix.h
|
|
typedef struct matrix {
|
|
int rows, cols;
|
|
float **vals;
|
|
} matrix;
|
|
|
|
// data.h
|
|
typedef struct data {
|
|
int w, h;
|
|
matrix X;
|
|
matrix y;
|
|
int shallow;
|
|
int *num_boxes;
|
|
box **boxes;
|
|
} data;
|
|
|
|
// data.h
|
|
typedef enum {
|
|
CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA, SUPER_DATA, LETTERBOX_DATA, REGRESSION_DATA, SEGMENTATION_DATA, INSTANCE_DATA, ISEG_DATA
|
|
} data_type;
|
|
|
|
// data.h
|
|
typedef struct load_args {
|
|
int threads;
|
|
char **paths;
|
|
char *path;
|
|
int n;
|
|
int m;
|
|
char **labels;
|
|
int h;
|
|
int w;
|
|
int c; // color depth
|
|
int out_w;
|
|
int out_h;
|
|
int nh;
|
|
int nw;
|
|
int num_boxes;
|
|
int min, max, size;
|
|
int classes;
|
|
int background;
|
|
int scale;
|
|
int center;
|
|
int coords;
|
|
int mini_batch;
|
|
int track;
|
|
int augment_speed;
|
|
int letter_box;
|
|
int show_imgs;
|
|
int dontuse_opencv;
|
|
float jitter;
|
|
int flip;
|
|
int gaussian_noise;
|
|
int blur;
|
|
int mixup;
|
|
float label_smooth_eps;
|
|
float angle;
|
|
float aspect;
|
|
float saturation;
|
|
float exposure;
|
|
float hue;
|
|
data *d;
|
|
image *im;
|
|
image *resized;
|
|
data_type type;
|
|
tree *hierarchy;
|
|
} load_args;
|
|
|
|
// data.h
|
|
typedef struct box_label {
|
|
int id;
|
|
float x, y, w, h;
|
|
float left, right, top, bottom;
|
|
} box_label;
|
|
|
|
// list.h
|
|
//typedef struct node {
|
|
// void *val;
|
|
// struct node *next;
|
|
// struct node *prev;
|
|
//} node;
|
|
|
|
// list.h
|
|
//typedef struct list {
|
|
// int size;
|
|
// node *front;
|
|
// node *back;
|
|
//} list;
|
|
|
|
// -----------------------------------------------------
|
|
|
|
|
|
// parser.c
|
|
LIB_API network *load_network(char *cfg, char *weights, int clear);
|
|
LIB_API network *load_network_custom(char *cfg, char *weights, int clear, int batch);
|
|
LIB_API network *load_network(char *cfg, char *weights, int clear);
|
|
LIB_API void free_network(network net);
|
|
|
|
// network.c
|
|
LIB_API load_args get_base_args(network *net);
|
|
|
|
// box.h
|
|
LIB_API void do_nms_sort(detection *dets, int total, int classes, float thresh);
|
|
LIB_API void do_nms_obj(detection *dets, int total, int classes, float thresh);
|
|
LIB_API void diounms_sort(detection *dets, int total, int classes, float thresh, NMS_KIND nms_kind, float beta1);
|
|
|
|
// network.h
|
|
LIB_API float *network_predict(network net, float *input);
|
|
LIB_API float *network_predict_ptr(network *net, float *input);
|
|
LIB_API detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter);
|
|
LIB_API det_num_pair* network_predict_batch(network *net, image im, int batch_size, int w, int h, float thresh, float hier, int *map, int relative, int letter);
|
|
LIB_API void free_detections(detection *dets, int n);
|
|
LIB_API void free_batch_detections(det_num_pair *det_num_pairs, int n);
|
|
LIB_API void fuse_conv_batchnorm(network net);
|
|
LIB_API void calculate_binary_weights(network net);
|
|
LIB_API char *detection_to_json(detection *dets, int nboxes, int classes, char **names, long long int frame_id, char *filename);
|
|
|
|
LIB_API layer* get_network_layer(network* net, int i);
|
|
//LIB_API detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter);
|
|
LIB_API detection *make_network_boxes(network *net, float thresh, int *num);
|
|
LIB_API void reset_rnn(network *net);
|
|
LIB_API float *network_predict_image(network *net, image im);
|
|
LIB_API float *network_predict_image_letterbox(network *net, image im);
|
|
LIB_API float validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou, const float iou_thresh, const int map_points, int letter_box, network *existing_net);
|
|
LIB_API void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int calc_map, int mjpeg_port, int show_imgs, int benchmark_layers, char* chart_path);
|
|
LIB_API void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh,
|
|
float hier_thresh, int dont_show, int ext_output, int save_labels, char *outfile, int letter_box, int benchmark_layers);
|
|
LIB_API int network_width(network *net);
|
|
LIB_API int network_height(network *net);
|
|
LIB_API void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm);
|
|
|
|
// image.h
|
|
LIB_API void make_image_red(image im);
|
|
LIB_API image make_attention_image(int img_size, float *original_delta_cpu, float *original_input_cpu, int w, int h, int c);
|
|
LIB_API image resize_image(image im, int w, int h);
|
|
LIB_API void quantize_image(image im);
|
|
LIB_API void copy_image_from_bytes(image im, char *pdata);
|
|
LIB_API image letterbox_image(image im, int w, int h);
|
|
LIB_API void rgbgr_image(image im);
|
|
LIB_API image make_image(int w, int h, int c);
|
|
LIB_API image load_image_color(char *filename, int w, int h);
|
|
LIB_API void free_image(image m);
|
|
LIB_API image crop_image(image im, int dx, int dy, int w, int h);
|
|
LIB_API image resize_min(image im, int min);
|
|
|
|
// layer.h
|
|
LIB_API void free_layer_custom(layer l, int keep_cudnn_desc);
|
|
LIB_API void free_layer(layer l);
|
|
|
|
// data.c
|
|
LIB_API void free_data(data d);
|
|
LIB_API pthread_t load_data(load_args args);
|
|
LIB_API void free_load_threads(void *ptr);
|
|
LIB_API pthread_t load_data_in_thread(load_args args);
|
|
LIB_API void *load_thread(void *ptr);
|
|
|
|
// dark_cuda.h
|
|
LIB_API void cuda_pull_array(float *x_gpu, float *x, size_t n);
|
|
LIB_API void cuda_pull_array_async(float *x_gpu, float *x, size_t n);
|
|
LIB_API void cuda_set_device(int n);
|
|
LIB_API void *cuda_get_context();
|
|
|
|
// utils.h
|
|
LIB_API void free_ptrs(void **ptrs, int n);
|
|
LIB_API void top_k(float *a, int n, int k, int *index);
|
|
|
|
// tree.h
|
|
LIB_API tree *read_tree(char *filename);
|
|
|
|
// option_list.h
|
|
LIB_API metadata get_metadata(char *file);
|
|
|
|
|
|
// http_stream.h
|
|
LIB_API void delete_json_sender();
|
|
LIB_API void send_json_custom(char const* send_buf, int port, int timeout);
|
|
LIB_API double get_time_point();
|
|
void start_timer();
|
|
void stop_timer();
|
|
double get_time();
|
|
void stop_timer_and_show();
|
|
void stop_timer_and_show_name(char *name);
|
|
void show_total_time();
|
|
|
|
// gemm.h
|
|
LIB_API void init_cpu();
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif // __cplusplus
|
|
#endif // DARKNET_API
|