mirror of https://github.com/AlexeyAB/darknet.git
527 lines
20 KiB
Python
527 lines
20 KiB
Python
#!python3
|
|
"""
|
|
Python 3 wrapper for identifying objects in images
|
|
|
|
Requires DLL compilation
|
|
|
|
Both the GPU and no-GPU version should be compiled; the no-GPU version should be renamed "yolo_cpp_dll_nogpu.dll".
|
|
|
|
On a GPU system, you can force CPU evaluation by any of:
|
|
|
|
- Set global variable DARKNET_FORCE_CPU to True
|
|
- Set environment variable CUDA_VISIBLE_DEVICES to -1
|
|
- Set environment variable "FORCE_CPU" to "true"
|
|
|
|
|
|
To use, either run performDetect() after import, or modify the end of this file.
|
|
|
|
See the docstring of performDetect() for parameters.
|
|
|
|
Directly viewing or returning bounding-boxed images requires scikit-image to be installed (`pip install scikit-image`)
|
|
|
|
|
|
Original *nix 2.7: https://github.com/pjreddie/darknet/blob/0f110834f4e18b30d5f101bf8f1724c34b7b83db/python/darknet.py
|
|
Windows Python 2.7 version: https://github.com/AlexeyAB/darknet/blob/fc496d52bf22a0bb257300d3c79be9cd80e722cb/build/darknet/x64/darknet.py
|
|
|
|
@author: Philip Kahn
|
|
@date: 20180503
|
|
"""
|
|
#pylint: disable=R, W0401, W0614, W0703
|
|
from ctypes import *
|
|
import math
|
|
import random
|
|
import os
|
|
|
|
def sample(probs):
|
|
s = sum(probs)
|
|
probs = [a/s for a in probs]
|
|
r = random.uniform(0, 1)
|
|
for i in range(len(probs)):
|
|
r = r - probs[i]
|
|
if r <= 0:
|
|
return i
|
|
return len(probs)-1
|
|
|
|
def c_array(ctype, values):
|
|
arr = (ctype*len(values))()
|
|
arr[:] = values
|
|
return arr
|
|
|
|
class BOX(Structure):
|
|
_fields_ = [("x", c_float),
|
|
("y", c_float),
|
|
("w", c_float),
|
|
("h", c_float)]
|
|
|
|
class DETECTION(Structure):
|
|
_fields_ = [("bbox", BOX),
|
|
("classes", c_int),
|
|
("prob", POINTER(c_float)),
|
|
("mask", POINTER(c_float)),
|
|
("objectness", c_float),
|
|
("sort_class", c_int),
|
|
("uc", POINTER(c_float)),
|
|
("points", c_int)]
|
|
|
|
class DETNUMPAIR(Structure):
|
|
_fields_ = [("num", c_int),
|
|
("dets", POINTER(DETECTION))]
|
|
|
|
class IMAGE(Structure):
|
|
_fields_ = [("w", c_int),
|
|
("h", c_int),
|
|
("c", c_int),
|
|
("data", POINTER(c_float))]
|
|
|
|
class METADATA(Structure):
|
|
_fields_ = [("classes", c_int),
|
|
("names", POINTER(c_char_p))]
|
|
|
|
|
|
|
|
#lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL)
|
|
#lib = CDLL("libdarknet.so", RTLD_GLOBAL)
|
|
hasGPU = True
|
|
if os.name == "nt":
|
|
cwd = os.path.dirname(__file__)
|
|
os.environ['PATH'] = cwd + ';' + os.environ['PATH']
|
|
winGPUdll = os.path.join(cwd, "yolo_cpp_dll.dll")
|
|
winNoGPUdll = os.path.join(cwd, "yolo_cpp_dll_nogpu.dll")
|
|
envKeys = list()
|
|
for k, v in os.environ.items():
|
|
envKeys.append(k)
|
|
try:
|
|
try:
|
|
tmp = os.environ["FORCE_CPU"].lower()
|
|
if tmp in ["1", "true", "yes", "on"]:
|
|
raise ValueError("ForceCPU")
|
|
else:
|
|
print("Flag value '"+tmp+"' not forcing CPU mode")
|
|
except KeyError:
|
|
# We never set the flag
|
|
if 'CUDA_VISIBLE_DEVICES' in envKeys:
|
|
if int(os.environ['CUDA_VISIBLE_DEVICES']) < 0:
|
|
raise ValueError("ForceCPU")
|
|
try:
|
|
global DARKNET_FORCE_CPU
|
|
if DARKNET_FORCE_CPU:
|
|
raise ValueError("ForceCPU")
|
|
except NameError:
|
|
pass
|
|
# print(os.environ.keys())
|
|
# print("FORCE_CPU flag undefined, proceeding with GPU")
|
|
if not os.path.exists(winGPUdll):
|
|
raise ValueError("NoDLL")
|
|
lib = CDLL(winGPUdll, RTLD_GLOBAL)
|
|
except (KeyError, ValueError):
|
|
hasGPU = False
|
|
if os.path.exists(winNoGPUdll):
|
|
lib = CDLL(winNoGPUdll, RTLD_GLOBAL)
|
|
print("Notice: CPU-only mode")
|
|
else:
|
|
# Try the other way, in case no_gpu was
|
|
# compile but not renamed
|
|
lib = CDLL(winGPUdll, RTLD_GLOBAL)
|
|
print("Environment variables indicated a CPU run, but we didn't find `"+winNoGPUdll+"`. Trying a GPU run anyway.")
|
|
else:
|
|
lib = CDLL("./libdarknet.so", RTLD_GLOBAL)
|
|
lib.network_width.argtypes = [c_void_p]
|
|
lib.network_width.restype = c_int
|
|
lib.network_height.argtypes = [c_void_p]
|
|
lib.network_height.restype = c_int
|
|
|
|
copy_image_from_bytes = lib.copy_image_from_bytes
|
|
copy_image_from_bytes.argtypes = [IMAGE,c_char_p]
|
|
|
|
def network_width(net):
|
|
return lib.network_width(net)
|
|
|
|
def network_height(net):
|
|
return lib.network_height(net)
|
|
|
|
predict = lib.network_predict_ptr
|
|
predict.argtypes = [c_void_p, POINTER(c_float)]
|
|
predict.restype = POINTER(c_float)
|
|
|
|
if hasGPU:
|
|
set_gpu = lib.cuda_set_device
|
|
set_gpu.argtypes = [c_int]
|
|
|
|
init_cpu = lib.init_cpu
|
|
|
|
make_image = lib.make_image
|
|
make_image.argtypes = [c_int, c_int, c_int]
|
|
make_image.restype = IMAGE
|
|
|
|
get_network_boxes = lib.get_network_boxes
|
|
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int), c_int]
|
|
get_network_boxes.restype = POINTER(DETECTION)
|
|
|
|
make_network_boxes = lib.make_network_boxes
|
|
make_network_boxes.argtypes = [c_void_p]
|
|
make_network_boxes.restype = POINTER(DETECTION)
|
|
|
|
free_detections = lib.free_detections
|
|
free_detections.argtypes = [POINTER(DETECTION), c_int]
|
|
|
|
free_batch_detections = lib.free_batch_detections
|
|
free_batch_detections.argtypes = [POINTER(DETNUMPAIR), c_int]
|
|
|
|
free_ptrs = lib.free_ptrs
|
|
free_ptrs.argtypes = [POINTER(c_void_p), c_int]
|
|
|
|
network_predict = lib.network_predict_ptr
|
|
network_predict.argtypes = [c_void_p, POINTER(c_float)]
|
|
|
|
reset_rnn = lib.reset_rnn
|
|
reset_rnn.argtypes = [c_void_p]
|
|
|
|
load_net = lib.load_network
|
|
load_net.argtypes = [c_char_p, c_char_p, c_int]
|
|
load_net.restype = c_void_p
|
|
|
|
load_net_custom = lib.load_network_custom
|
|
load_net_custom.argtypes = [c_char_p, c_char_p, c_int, c_int]
|
|
load_net_custom.restype = c_void_p
|
|
|
|
do_nms_obj = lib.do_nms_obj
|
|
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
|
|
|
|
do_nms_sort = lib.do_nms_sort
|
|
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
|
|
|
|
free_image = lib.free_image
|
|
free_image.argtypes = [IMAGE]
|
|
|
|
letterbox_image = lib.letterbox_image
|
|
letterbox_image.argtypes = [IMAGE, c_int, c_int]
|
|
letterbox_image.restype = IMAGE
|
|
|
|
load_meta = lib.get_metadata
|
|
lib.get_metadata.argtypes = [c_char_p]
|
|
lib.get_metadata.restype = METADATA
|
|
|
|
load_image = lib.load_image_color
|
|
load_image.argtypes = [c_char_p, c_int, c_int]
|
|
load_image.restype = IMAGE
|
|
|
|
rgbgr_image = lib.rgbgr_image
|
|
rgbgr_image.argtypes = [IMAGE]
|
|
|
|
predict_image = lib.network_predict_image
|
|
predict_image.argtypes = [c_void_p, IMAGE]
|
|
predict_image.restype = POINTER(c_float)
|
|
|
|
predict_image_letterbox = lib.network_predict_image_letterbox
|
|
predict_image_letterbox.argtypes = [c_void_p, IMAGE]
|
|
predict_image_letterbox.restype = POINTER(c_float)
|
|
|
|
network_predict_batch = lib.network_predict_batch
|
|
network_predict_batch.argtypes = [c_void_p, IMAGE, c_int, c_int, c_int,
|
|
c_float, c_float, POINTER(c_int), c_int, c_int]
|
|
network_predict_batch.restype = POINTER(DETNUMPAIR)
|
|
|
|
def array_to_image(arr):
|
|
import numpy as np
|
|
# need to return old values to avoid python freeing memory
|
|
arr = arr.transpose(2,0,1)
|
|
c = arr.shape[0]
|
|
h = arr.shape[1]
|
|
w = arr.shape[2]
|
|
arr = np.ascontiguousarray(arr.flat, dtype=np.float32) / 255.0
|
|
data = arr.ctypes.data_as(POINTER(c_float))
|
|
im = IMAGE(w,h,c,data)
|
|
return im, arr
|
|
|
|
def classify(net, meta, im):
|
|
out = predict_image(net, im)
|
|
res = []
|
|
for i in range(meta.classes):
|
|
if altNames is None:
|
|
nameTag = meta.names[i]
|
|
else:
|
|
nameTag = altNames[i]
|
|
res.append((nameTag, out[i]))
|
|
res = sorted(res, key=lambda x: -x[1])
|
|
return res
|
|
|
|
def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45, debug= False):
|
|
"""
|
|
Performs the meat of the detection
|
|
"""
|
|
#pylint: disable= C0321
|
|
im = load_image(image, 0, 0)
|
|
if debug: print("Loaded image")
|
|
ret = detect_image(net, meta, im, thresh, hier_thresh, nms, debug)
|
|
free_image(im)
|
|
if debug: print("freed image")
|
|
return ret
|
|
|
|
def detect_image(net, meta, im, thresh=.5, hier_thresh=.5, nms=.45, debug= False):
|
|
#import cv2
|
|
#custom_image_bgr = cv2.imread(image) # use: detect(,,imagePath,)
|
|
#custom_image = cv2.cvtColor(custom_image_bgr, cv2.COLOR_BGR2RGB)
|
|
#custom_image = cv2.resize(custom_image,(lib.network_width(net), lib.network_height(net)), interpolation = cv2.INTER_LINEAR)
|
|
#import scipy.misc
|
|
#custom_image = scipy.misc.imread(image)
|
|
#im, arr = array_to_image(custom_image) # you should comment line below: free_image(im)
|
|
num = c_int(0)
|
|
if debug: print("Assigned num")
|
|
pnum = pointer(num)
|
|
if debug: print("Assigned pnum")
|
|
predict_image(net, im)
|
|
letter_box = 0
|
|
#predict_image_letterbox(net, im)
|
|
#letter_box = 1
|
|
if debug: print("did prediction")
|
|
#dets = get_network_boxes(net, custom_image_bgr.shape[1], custom_image_bgr.shape[0], thresh, hier_thresh, None, 0, pnum, letter_box) # OpenCV
|
|
dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum, letter_box)
|
|
if debug: print("Got dets")
|
|
num = pnum[0]
|
|
if debug: print("got zeroth index of pnum")
|
|
if nms:
|
|
do_nms_sort(dets, num, meta.classes, nms)
|
|
if debug: print("did sort")
|
|
res = []
|
|
if debug: print("about to range")
|
|
for j in range(num):
|
|
if debug: print("Ranging on "+str(j)+" of "+str(num))
|
|
if debug: print("Classes: "+str(meta), meta.classes, meta.names)
|
|
for i in range(meta.classes):
|
|
if debug: print("Class-ranging on "+str(i)+" of "+str(meta.classes)+"= "+str(dets[j].prob[i]))
|
|
if dets[j].prob[i] > 0:
|
|
b = dets[j].bbox
|
|
if altNames is None:
|
|
nameTag = meta.names[i]
|
|
else:
|
|
nameTag = altNames[i]
|
|
if debug:
|
|
print("Got bbox", b)
|
|
print(nameTag)
|
|
print(dets[j].prob[i])
|
|
print((b.x, b.y, b.w, b.h))
|
|
res.append((nameTag, dets[j].prob[i], (b.x, b.y, b.w, b.h)))
|
|
if debug: print("did range")
|
|
res = sorted(res, key=lambda x: -x[1])
|
|
if debug: print("did sort")
|
|
free_detections(dets, num)
|
|
if debug: print("freed detections")
|
|
return res
|
|
|
|
|
|
netMain = None
|
|
metaMain = None
|
|
altNames = None
|
|
|
|
def performDetect(imagePath="data/dog.jpg", thresh= 0.25, configPath = "./cfg/yolov3.cfg", weightPath = "yolov3.weights", metaPath= "./cfg/coco.data", showImage= True, makeImageOnly = False, initOnly= False):
|
|
"""
|
|
Convenience function to handle the detection and returns of objects.
|
|
|
|
Displaying bounding boxes requires libraries scikit-image and numpy
|
|
|
|
Parameters
|
|
----------------
|
|
imagePath: str
|
|
Path to the image to evaluate. Raises ValueError if not found
|
|
|
|
thresh: float (default= 0.25)
|
|
The detection threshold
|
|
|
|
configPath: str
|
|
Path to the configuration file. Raises ValueError if not found
|
|
|
|
weightPath: str
|
|
Path to the weights file. Raises ValueError if not found
|
|
|
|
metaPath: str
|
|
Path to the data file. Raises ValueError if not found
|
|
|
|
showImage: bool (default= True)
|
|
Compute (and show) bounding boxes. Changes return.
|
|
|
|
makeImageOnly: bool (default= False)
|
|
If showImage is True, this won't actually *show* the image, but will create the array and return it.
|
|
|
|
initOnly: bool (default= False)
|
|
Only initialize globals. Don't actually run a prediction.
|
|
|
|
Returns
|
|
----------------------
|
|
|
|
|
|
When showImage is False, list of tuples like
|
|
('obj_label', confidence, (bounding_box_x_px, bounding_box_y_px, bounding_box_width_px, bounding_box_height_px))
|
|
The X and Y coordinates are from the center of the bounding box. Subtract half the width or height to get the lower corner.
|
|
|
|
Otherwise, a dict with
|
|
{
|
|
"detections": as above
|
|
"image": a numpy array representing an image, compatible with scikit-image
|
|
"caption": an image caption
|
|
}
|
|
"""
|
|
# Import the global variables. This lets us instance Darknet once, then just call performDetect() again without instancing again
|
|
global metaMain, netMain, altNames #pylint: disable=W0603
|
|
assert 0 < thresh < 1, "Threshold should be a float between zero and one (non-inclusive)"
|
|
if not os.path.exists(configPath):
|
|
raise ValueError("Invalid config path `"+os.path.abspath(configPath)+"`")
|
|
if not os.path.exists(weightPath):
|
|
raise ValueError("Invalid weight path `"+os.path.abspath(weightPath)+"`")
|
|
if not os.path.exists(metaPath):
|
|
raise ValueError("Invalid data file path `"+os.path.abspath(metaPath)+"`")
|
|
if netMain is None:
|
|
netMain = load_net_custom(configPath.encode("ascii"), weightPath.encode("ascii"), 0, 1) # batch size = 1
|
|
if metaMain is None:
|
|
metaMain = load_meta(metaPath.encode("ascii"))
|
|
if altNames is None:
|
|
# In Python 3, the metafile default access craps out on Windows (but not Linux)
|
|
# Read the names file and create a list to feed to detect
|
|
try:
|
|
with open(metaPath) as metaFH:
|
|
metaContents = metaFH.read()
|
|
import re
|
|
match = re.search("names *= *(.*)$", metaContents, re.IGNORECASE | re.MULTILINE)
|
|
if match:
|
|
result = match.group(1)
|
|
else:
|
|
result = None
|
|
try:
|
|
if os.path.exists(result):
|
|
with open(result) as namesFH:
|
|
namesList = namesFH.read().strip().split("\n")
|
|
altNames = [x.strip() for x in namesList]
|
|
except TypeError:
|
|
pass
|
|
except Exception:
|
|
pass
|
|
if initOnly:
|
|
print("Initialized detector")
|
|
return None
|
|
if not os.path.exists(imagePath):
|
|
raise ValueError("Invalid image path `"+os.path.abspath(imagePath)+"`")
|
|
# Do the detection
|
|
#detections = detect(netMain, metaMain, imagePath, thresh) # if is used cv2.imread(image)
|
|
detections = detect(netMain, metaMain, imagePath.encode("ascii"), thresh)
|
|
if showImage:
|
|
try:
|
|
from skimage import io, draw
|
|
import numpy as np
|
|
image = io.imread(imagePath)
|
|
print("*** "+str(len(detections))+" Results, color coded by confidence ***")
|
|
imcaption = []
|
|
for detection in detections:
|
|
label = detection[0]
|
|
confidence = detection[1]
|
|
pstring = label+": "+str(np.rint(100 * confidence))+"%"
|
|
imcaption.append(pstring)
|
|
print(pstring)
|
|
bounds = detection[2]
|
|
shape = image.shape
|
|
# x = shape[1]
|
|
# xExtent = int(x * bounds[2] / 100)
|
|
# y = shape[0]
|
|
# yExtent = int(y * bounds[3] / 100)
|
|
yExtent = int(bounds[3])
|
|
xEntent = int(bounds[2])
|
|
# Coordinates are around the center
|
|
xCoord = int(bounds[0] - bounds[2]/2)
|
|
yCoord = int(bounds[1] - bounds[3]/2)
|
|
boundingBox = [
|
|
[xCoord, yCoord],
|
|
[xCoord, yCoord + yExtent],
|
|
[xCoord + xEntent, yCoord + yExtent],
|
|
[xCoord + xEntent, yCoord]
|
|
]
|
|
# Wiggle it around to make a 3px border
|
|
rr, cc = draw.polygon_perimeter([x[1] for x in boundingBox], [x[0] for x in boundingBox], shape= shape)
|
|
rr2, cc2 = draw.polygon_perimeter([x[1] + 1 for x in boundingBox], [x[0] for x in boundingBox], shape= shape)
|
|
rr3, cc3 = draw.polygon_perimeter([x[1] - 1 for x in boundingBox], [x[0] for x in boundingBox], shape= shape)
|
|
rr4, cc4 = draw.polygon_perimeter([x[1] for x in boundingBox], [x[0] + 1 for x in boundingBox], shape= shape)
|
|
rr5, cc5 = draw.polygon_perimeter([x[1] for x in boundingBox], [x[0] - 1 for x in boundingBox], shape= shape)
|
|
boxColor = (int(255 * (1 - (confidence ** 2))), int(255 * (confidence ** 2)), 0)
|
|
draw.set_color(image, (rr, cc), boxColor, alpha= 0.8)
|
|
draw.set_color(image, (rr2, cc2), boxColor, alpha= 0.8)
|
|
draw.set_color(image, (rr3, cc3), boxColor, alpha= 0.8)
|
|
draw.set_color(image, (rr4, cc4), boxColor, alpha= 0.8)
|
|
draw.set_color(image, (rr5, cc5), boxColor, alpha= 0.8)
|
|
if not makeImageOnly:
|
|
io.imshow(image)
|
|
io.show()
|
|
detections = {
|
|
"detections": detections,
|
|
"image": image,
|
|
"caption": "\n<br/>".join(imcaption)
|
|
}
|
|
except Exception as e:
|
|
print("Unable to show image: "+str(e))
|
|
return detections
|
|
|
|
def performBatchDetect(thresh= 0.25, configPath = "./cfg/yolov3.cfg", weightPath = "yolov3.weights", metaPath= "./cfg/coco.data", hier_thresh=.5, nms=.45, batch_size=3):
|
|
import cv2
|
|
import numpy as np
|
|
# NB! Image sizes should be the same
|
|
# You can change the images, yet, be sure that they have the same width and height
|
|
img_samples = ['data/person.jpg', 'data/person.jpg', 'data/person.jpg']
|
|
image_list = [cv2.imread(k) for k in img_samples]
|
|
|
|
net = load_net_custom(configPath.encode('utf-8'), weightPath.encode('utf-8'), 0, batch_size)
|
|
meta = load_meta(metaPath.encode('utf-8'))
|
|
pred_height, pred_width, c = image_list[0].shape
|
|
net_width, net_height = (network_width(net), network_height(net))
|
|
img_list = []
|
|
for custom_image_bgr in image_list:
|
|
custom_image = cv2.cvtColor(custom_image_bgr, cv2.COLOR_BGR2RGB)
|
|
custom_image = cv2.resize(
|
|
custom_image, (net_width, net_height), interpolation=cv2.INTER_NEAREST)
|
|
custom_image = custom_image.transpose(2, 0, 1)
|
|
img_list.append(custom_image)
|
|
|
|
arr = np.concatenate(img_list, axis=0)
|
|
arr = np.ascontiguousarray(arr.flat, dtype=np.float32) / 255.0
|
|
data = arr.ctypes.data_as(POINTER(c_float))
|
|
im = IMAGE(net_width, net_height, c, data)
|
|
|
|
batch_dets = network_predict_batch(net, im, batch_size, pred_width,
|
|
pred_height, thresh, hier_thresh, None, 0, 0)
|
|
batch_boxes = []
|
|
batch_scores = []
|
|
batch_classes = []
|
|
for b in range(batch_size):
|
|
num = batch_dets[b].num
|
|
dets = batch_dets[b].dets
|
|
if nms:
|
|
do_nms_obj(dets, num, meta.classes, nms)
|
|
boxes = []
|
|
scores = []
|
|
classes = []
|
|
for i in range(num):
|
|
det = dets[i]
|
|
score = -1
|
|
label = None
|
|
for c in range(det.classes):
|
|
p = det.prob[c]
|
|
if p > score:
|
|
score = p
|
|
label = c
|
|
if score > thresh:
|
|
box = det.bbox
|
|
left, top, right, bottom = map(int,(box.x - box.w / 2, box.y - box.h / 2,
|
|
box.x + box.w / 2, box.y + box.h / 2))
|
|
boxes.append((top, left, bottom, right))
|
|
scores.append(score)
|
|
classes.append(label)
|
|
boxColor = (int(255 * (1 - (score ** 2))), int(255 * (score ** 2)), 0)
|
|
cv2.rectangle(image_list[b], (left, top),
|
|
(right, bottom), boxColor, 2)
|
|
cv2.imwrite(os.path.basename(img_samples[b]),image_list[b])
|
|
|
|
batch_boxes.append(boxes)
|
|
batch_scores.append(scores)
|
|
batch_classes.append(classes)
|
|
free_batch_detections(batch_dets, batch_size)
|
|
return batch_boxes, batch_scores, batch_classes
|
|
|
|
if __name__ == "__main__":
|
|
print(performDetect())
|
|
#Uncomment the following line to see batch inference working
|
|
#print(performBatchDetect()) |