mirror of https://github.com/AlexeyAB/darknet.git
393 lines
9.2 KiB
C
393 lines
9.2 KiB
C
//usr/bin/cc -Ofast -lm "${0}" -o "${0%.c}" && ./"${0%.c}" "$@"; s=$?; rm ./"${0%.c}"; exit $s
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
|
|
typedef struct matrix{
|
|
int rows, cols;
|
|
double **vals;
|
|
} matrix;
|
|
|
|
matrix csv_to_matrix(char *filename, int header);
|
|
matrix make_matrix(int rows, int cols);
|
|
void zero_matrix(matrix m);
|
|
|
|
void copy(double *x, double *y, int n);
|
|
double dist(double *x, double *y, int n);
|
|
int *sample(int n);
|
|
|
|
int find_int_arg(int argc, char **argv, char *arg, int def);
|
|
int find_arg(int argc, char* argv[], char *arg);
|
|
|
|
int closest_center(double *datum, matrix centers)
|
|
{
|
|
int j;
|
|
int best = 0;
|
|
double best_dist = dist(datum, centers.vals[best], centers.cols);
|
|
for(j = 0; j < centers.rows; ++j){
|
|
double new_dist = dist(datum, centers.vals[j], centers.cols);
|
|
if(new_dist < best_dist){
|
|
best_dist = new_dist;
|
|
best = j;
|
|
}
|
|
}
|
|
return best;
|
|
}
|
|
|
|
double dist_to_closest_center(double *datum, matrix centers)
|
|
{
|
|
int ci = closest_center(datum, centers);
|
|
return dist(datum, centers.vals[ci], centers.cols);
|
|
}
|
|
|
|
int kmeans_expectation(matrix data, int *assignments, matrix centers)
|
|
{
|
|
int i;
|
|
int converged = 1;
|
|
for(i = 0; i < data.rows; ++i){
|
|
int closest = closest_center(data.vals[i], centers);
|
|
if(closest != assignments[i]) converged = 0;
|
|
assignments[i] = closest;
|
|
}
|
|
return converged;
|
|
}
|
|
|
|
void kmeans_maximization(matrix data, int *assignments, matrix centers)
|
|
{
|
|
int i,j;
|
|
int *counts = calloc(centers.rows, sizeof(int));
|
|
zero_matrix(centers);
|
|
for(i = 0; i < data.rows; ++i){
|
|
++counts[assignments[i]];
|
|
for(j = 0; j < data.cols; ++j){
|
|
centers.vals[assignments[i]][j] += data.vals[i][j];
|
|
}
|
|
}
|
|
for(i = 0; i < centers.rows; ++i){
|
|
if(counts[i]){
|
|
for(j = 0; j < centers.cols; ++j){
|
|
centers.vals[i][j] /= counts[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
double WCSS(matrix data, int *assignments, matrix centers)
|
|
{
|
|
int i, j;
|
|
double sum = 0;
|
|
|
|
for(i = 0; i < data.rows; ++i){
|
|
int ci = assignments[i];
|
|
sum += (1 - dist(data.vals[i], centers.vals[ci], data.cols));
|
|
}
|
|
return sum / data.rows;
|
|
}
|
|
|
|
typedef struct{
|
|
int *assignments;
|
|
matrix centers;
|
|
} model;
|
|
|
|
void smart_centers(matrix data, matrix centers) {
|
|
int i,j;
|
|
copy(data.vals[rand()%data.rows], centers.vals[0], data.cols);
|
|
double *weights = calloc(data.rows, sizeof(double));
|
|
int clusters = centers.rows;
|
|
for (i = 1; i < clusters; ++i) {
|
|
double sum = 0;
|
|
centers.rows = i;
|
|
for (j = 0; j < data.rows; ++j) {
|
|
weights[j] = dist_to_closest_center(data.vals[j], centers);
|
|
sum += weights[j];
|
|
}
|
|
double r = sum*((double)rand()/RAND_MAX);
|
|
for (j = 0; j < data.rows; ++j) {
|
|
r -= weights[j];
|
|
if(r <= 0){
|
|
copy(data.vals[j], centers.vals[i], data.cols);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
free(weights);
|
|
}
|
|
|
|
void random_centers(matrix data, matrix centers){
|
|
int i;
|
|
int *s = sample(data.rows);
|
|
for(i = 0; i < centers.rows; ++i){
|
|
copy(data.vals[s[i]], centers.vals[i], data.cols);
|
|
}
|
|
free(s);
|
|
}
|
|
|
|
model do_kmeans(matrix data, int k)
|
|
{
|
|
matrix centers = make_matrix(k, data.cols);
|
|
int *assignments = calloc(data.rows, sizeof(int));
|
|
smart_centers(data, centers);
|
|
//random_centers(data, centers);
|
|
if(k == 1) kmeans_maximization(data, assignments, centers);
|
|
while(!kmeans_expectation(data, assignments, centers)){
|
|
kmeans_maximization(data, assignments, centers);
|
|
}
|
|
model m;
|
|
m.assignments = assignments;
|
|
m.centers = centers;
|
|
return m;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
if(argc < 3){
|
|
fprintf(stderr, "usage: %s <csv-file> [points/centers/stats]\n", argv[0]);
|
|
return 0;
|
|
}
|
|
int i,j;
|
|
srand(time(0));
|
|
matrix data = csv_to_matrix(argv[1], 0);
|
|
int k = find_int_arg(argc, argv, "-k", 2);
|
|
int header = find_arg(argc, argv, "-h");
|
|
int count = find_arg(argc, argv, "-c");
|
|
|
|
if(strcmp(argv[2], "assignments")==0){
|
|
model m = do_kmeans(data, k);
|
|
int *assignments = m.assignments;
|
|
for(i = 0; i < k; ++i){
|
|
if(i != 0) printf("-\n");
|
|
for(j = 0; j < data.rows; ++j){
|
|
if(!(assignments[j] == i)) continue;
|
|
printf("%f, %f\n", data.vals[j][0], data.vals[j][1]);
|
|
}
|
|
}
|
|
}else if(strcmp(argv[2], "centers")==0){
|
|
model m = do_kmeans(data, k);
|
|
printf("WCSS: %f\n", WCSS(data, m.assignments, m.centers));
|
|
int *counts = 0;
|
|
if(count){
|
|
counts = calloc(k, sizeof(int));
|
|
for(j = 0; j < data.rows; ++j){
|
|
++counts[m.assignments[j]];
|
|
}
|
|
}
|
|
for(j = 0; j < m.centers.rows; ++j){
|
|
if(count) printf("%d, ", counts[j]);
|
|
printf("%f, %f\n", m.centers.vals[j][0], m.centers.vals[j][1]);
|
|
}
|
|
}else if(strcmp(argv[2], "scan")==0){
|
|
for(i = 1; i <= k; ++i){
|
|
model m = do_kmeans(data, i);
|
|
printf("%f\n", WCSS(data, m.assignments, m.centers));
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Utility functions
|
|
|
|
int *sample(int n)
|
|
{
|
|
int i;
|
|
int *s = calloc(n, sizeof(int));
|
|
for(i = 0; i < n; ++i) s[i] = i;
|
|
for(i = n-1; i >= 0; --i){
|
|
int swap = s[i];
|
|
int index = rand()%(i+1);
|
|
s[i] = s[index];
|
|
s[index] = swap;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
double dist(double *x, double *y, int n)
|
|
{
|
|
int i;
|
|
double mw = (x[0] < y[0]) ? x[0] : y[0];
|
|
double mh = (x[1] < y[1]) ? x[1] : y[1];
|
|
double inter = mw*mh;
|
|
double sum = x[0]*x[1] + y[0]*y[1];
|
|
double un = sum - inter;
|
|
double iou = inter/un;
|
|
return 1-iou;
|
|
}
|
|
|
|
void copy(double *x, double *y, int n)
|
|
{
|
|
int i;
|
|
for(i = 0; i < n; ++i) y[i] = x[i];
|
|
}
|
|
|
|
void error(char *s){
|
|
fprintf(stderr, "Error: %s\n", s);
|
|
exit(-1);
|
|
}
|
|
|
|
char *fgetl(FILE *fp)
|
|
{
|
|
if(feof(fp)) return 0;
|
|
int size = 512;
|
|
char *line = malloc(size*sizeof(char));
|
|
if(!fgets(line, size, fp)){
|
|
free(line);
|
|
return 0;
|
|
}
|
|
|
|
int curr = strlen(line);
|
|
|
|
while(line[curr-1]!='\n'){
|
|
size *= 2;
|
|
line = realloc(line, size*sizeof(char));
|
|
if(!line) error("Malloc");
|
|
fgets(&line[curr], size-curr, fp);
|
|
curr = strlen(line);
|
|
}
|
|
line[curr-1] = '\0';
|
|
|
|
return line;
|
|
}
|
|
|
|
// Matrix stuff
|
|
|
|
int count_fields(char *line)
|
|
{
|
|
int count = 0;
|
|
int done = 0;
|
|
char *c;
|
|
for(c = line; !done; ++c){
|
|
done = (*c == '\0');
|
|
if(*c == ',' || done) ++count;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
double *parse_fields(char *l, int n)
|
|
{
|
|
int i;
|
|
double *field = calloc(n, sizeof(double));
|
|
for(i = 0; i < n; ++i){
|
|
field[i] = atof(l);
|
|
l = strchr(l, ',')+1;
|
|
}
|
|
return field;
|
|
}
|
|
|
|
matrix make_matrix(int rows, int cols)
|
|
{
|
|
matrix m;
|
|
m.rows = rows;
|
|
m.cols = cols;
|
|
m.vals = calloc(m.rows, sizeof(double *));
|
|
int i;
|
|
for(i = 0; i < m.rows; ++i) m.vals[i] = calloc(m.cols, sizeof(double));
|
|
return m;
|
|
}
|
|
|
|
void zero_matrix(matrix m)
|
|
{
|
|
int i, j;
|
|
for(i = 0; i < m.rows; ++i){
|
|
for(j = 0; j < m.cols; ++j) m.vals[i][j] = 0;
|
|
}
|
|
}
|
|
|
|
matrix csv_to_matrix(char *filename, int header)
|
|
{
|
|
FILE *fp = fopen(filename, "r");
|
|
if(!fp) error(filename);
|
|
|
|
matrix m;
|
|
m.cols = -1;
|
|
|
|
char *line;
|
|
|
|
int n = 0;
|
|
int size = 1024;
|
|
m.vals = calloc(size, sizeof(double*));
|
|
if(header) fgetl(fp);
|
|
while((line = fgetl(fp))){
|
|
if(m.cols == -1) m.cols = count_fields(line);
|
|
if(n == size){
|
|
size *= 2;
|
|
m.vals = realloc(m.vals, size*sizeof(double*));
|
|
}
|
|
m.vals[n] = parse_fields(line, m.cols);
|
|
free(line);
|
|
++n;
|
|
}
|
|
m.vals = realloc(m.vals, n*sizeof(double*));
|
|
m.rows = n;
|
|
return m;
|
|
}
|
|
|
|
// Arguement parsing
|
|
|
|
void del_arg(int argc, char **argv, int index)
|
|
{
|
|
int i;
|
|
for(i = index; i < argc-1; ++i) argv[i] = argv[i+1];
|
|
argv[i] = 0;
|
|
}
|
|
|
|
int find_arg(int argc, char* argv[], char *arg)
|
|
{
|
|
int i;
|
|
for(i = 0; i < argc; ++i) {
|
|
if(!argv[i]) continue;
|
|
if(0==strcmp(argv[i], arg)) {
|
|
del_arg(argc, argv, i);
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int find_int_arg(int argc, char **argv, char *arg, int def)
|
|
{
|
|
int i;
|
|
for(i = 0; i < argc-1; ++i){
|
|
if(!argv[i]) continue;
|
|
if(0==strcmp(argv[i], arg)){
|
|
def = atoi(argv[i+1]);
|
|
del_arg(argc, argv, i);
|
|
del_arg(argc, argv, i);
|
|
break;
|
|
}
|
|
}
|
|
return def;
|
|
}
|
|
|
|
float find_float_arg(int argc, char **argv, char *arg, float def)
|
|
{
|
|
int i;
|
|
for(i = 0; i < argc-1; ++i){
|
|
if(!argv[i]) continue;
|
|
if(0==strcmp(argv[i], arg)){
|
|
def = atof(argv[i+1]);
|
|
del_arg(argc, argv, i);
|
|
del_arg(argc, argv, i);
|
|
break;
|
|
}
|
|
}
|
|
return def;
|
|
}
|
|
|
|
char *find_char_arg(int argc, char **argv, char *arg, char *def)
|
|
{
|
|
int i;
|
|
for(i = 0; i < argc-1; ++i){
|
|
if(!argv[i]) continue;
|
|
if(0==strcmp(argv[i], arg)){
|
|
def = argv[i+1];
|
|
del_arg(argc, argv, i);
|
|
del_arg(argc, argv, i);
|
|
break;
|
|
}
|
|
}
|
|
return def;
|
|
}
|
|
|