mirror of https://github.com/AlexeyAB/darknet.git
166 lines
5.0 KiB
Python
166 lines
5.0 KiB
Python
'''
|
|
Created on Feb 20, 2017
|
|
|
|
@author: jumabek
|
|
'''
|
|
from os import listdir
|
|
from os.path import isfile, join
|
|
import argparse
|
|
#import cv2
|
|
import numpy as np
|
|
import sys
|
|
import os
|
|
import shutil
|
|
import random
|
|
import math
|
|
|
|
width_in_cfg_file = 416.
|
|
height_in_cfg_file = 416.
|
|
|
|
def IOU(x,centroids):
|
|
similarities = []
|
|
k = len(centroids)
|
|
for centroid in centroids:
|
|
c_w,c_h = centroid
|
|
w,h = x
|
|
if c_w>=w and c_h>=h:
|
|
similarity = w*h/(c_w*c_h)
|
|
elif c_w>=w and c_h<=h:
|
|
similarity = w*c_h/(w*h + (c_w-w)*c_h)
|
|
elif c_w<=w and c_h>=h:
|
|
similarity = c_w*h/(w*h + c_w*(c_h-h))
|
|
else: #means both w,h are bigger than c_w and c_h respectively
|
|
similarity = (c_w*c_h)/(w*h)
|
|
similarities.append(similarity) # will become (k,) shape
|
|
return np.array(similarities)
|
|
|
|
def avg_IOU(X,centroids):
|
|
n,d = X.shape
|
|
sum = 0.
|
|
for i in range(X.shape[0]):
|
|
#note IOU() will return array which contains IoU for each centroid and X[i] // slightly ineffective, but I am too lazy
|
|
sum+= max(IOU(X[i],centroids))
|
|
return sum/n
|
|
|
|
def write_anchors_to_file(centroids,X,anchor_file):
|
|
f = open(anchor_file,'w')
|
|
|
|
anchors = centroids.copy()
|
|
print(anchors.shape)
|
|
|
|
for i in range(anchors.shape[0]):
|
|
anchors[i][0]*=width_in_cfg_file/32.
|
|
anchors[i][1]*=height_in_cfg_file/32.
|
|
|
|
|
|
widths = anchors[:,0]
|
|
sorted_indices = np.argsort(widths)
|
|
|
|
print('Anchors = ', anchors[sorted_indices])
|
|
|
|
for i in sorted_indices[:-1]:
|
|
f.write('%0.2f,%0.2f, '%(anchors[i,0],anchors[i,1]))
|
|
|
|
#there should not be comma after last anchor, that's why
|
|
f.write('%0.2f,%0.2f\n'%(anchors[sorted_indices[-1:],0],anchors[sorted_indices[-1:],1]))
|
|
|
|
f.write('%f\n'%(avg_IOU(X,centroids)))
|
|
print()
|
|
|
|
def kmeans(X,centroids,eps,anchor_file):
|
|
|
|
N = X.shape[0]
|
|
iterations = 0
|
|
k,dim = centroids.shape
|
|
prev_assignments = np.ones(N)*(-1)
|
|
iter = 0
|
|
old_D = np.zeros((N,k))
|
|
|
|
while True:
|
|
D = []
|
|
iter+=1
|
|
for i in range(N):
|
|
d = 1 - IOU(X[i],centroids)
|
|
D.append(d)
|
|
D = np.array(D) # D.shape = (N,k)
|
|
|
|
print("iter {}: dists = {}".format(iter,np.sum(np.abs(old_D-D))))
|
|
|
|
#assign samples to centroids
|
|
assignments = np.argmin(D,axis=1)
|
|
|
|
if (assignments == prev_assignments).all() :
|
|
print("Centroids = ",centroids)
|
|
write_anchors_to_file(centroids,X,anchor_file)
|
|
return
|
|
|
|
#calculate new centroids
|
|
centroid_sums=np.zeros((k,dim),np.float)
|
|
for i in range(N):
|
|
centroid_sums[assignments[i]]+=X[i]
|
|
for j in range(k):
|
|
centroids[j] = centroid_sums[j]/(np.sum(assignments==j))
|
|
|
|
prev_assignments = assignments.copy()
|
|
old_D = D.copy()
|
|
|
|
def main(argv):
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-filelist', default = '\\path\\to\\voc\\filelist\\train.txt',
|
|
help='path to filelist\n' )
|
|
parser.add_argument('-output_dir', default = 'generated_anchors/anchors', type = str,
|
|
help='Output anchor directory\n' )
|
|
parser.add_argument('-num_clusters', default = 0, type = int,
|
|
help='number of clusters\n' )
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
if not os.path.exists(args.output_dir):
|
|
os.mkdir(args.output_dir)
|
|
|
|
f = open(args.filelist)
|
|
|
|
lines = [line.rstrip('\n') for line in f.readlines()]
|
|
|
|
annotation_dims = []
|
|
|
|
size = np.zeros((1,1,3))
|
|
for line in lines:
|
|
|
|
#line = line.replace('images','labels')
|
|
#line = line.replace('img1','labels')
|
|
line = line.replace('JPEGImages','labels')
|
|
|
|
|
|
line = line.replace('.jpg','.txt')
|
|
line = line.replace('.png','.txt')
|
|
print(line)
|
|
f2 = open(line)
|
|
for line in f2.readlines():
|
|
line = line.rstrip('\n')
|
|
w,h = line.split(' ')[3:]
|
|
#print(w,h)
|
|
annotation_dims.append(map(float,(w,h)))
|
|
annotation_dims = np.array(annotation_dims)
|
|
|
|
eps = 0.005
|
|
|
|
if args.num_clusters == 0:
|
|
for num_clusters in range(1,11): #we make 1 through 10 clusters
|
|
anchor_file = join( args.output_dir,'anchors%d.txt'%(num_clusters))
|
|
|
|
indices = [ random.randrange(annotation_dims.shape[0]) for i in range(num_clusters)]
|
|
centroids = annotation_dims[indices]
|
|
kmeans(annotation_dims,centroids,eps,anchor_file)
|
|
print('centroids.shape', centroids.shape)
|
|
else:
|
|
anchor_file = join( args.output_dir,'anchors%d.txt'%(args.num_clusters))
|
|
indices = [ random.randrange(annotation_dims.shape[0]) for i in range(args.num_clusters)]
|
|
centroids = annotation_dims[indices]
|
|
kmeans(annotation_dims,centroids,eps,anchor_file)
|
|
print('centroids.shape', centroids.shape)
|
|
|
|
if __name__=="__main__":
|
|
main(sys.argv)
|