mirror of https://github.com/AlexeyAB/darknet.git
238 lines
9.3 KiB
Python
238 lines
9.3 KiB
Python
import argparse
|
|
import os
|
|
import glob
|
|
import random
|
|
import time
|
|
import cv2
|
|
import numpy as np
|
|
import darknet
|
|
|
|
|
|
def parser():
|
|
parser = argparse.ArgumentParser(description="YOLO Object Detection")
|
|
parser.add_argument("--input", type=str, default="",
|
|
help="image source. It can be a single image, a"
|
|
"txt with paths to them, or a folder. Image valid"
|
|
" formats are jpg, jpeg or png."
|
|
"If no input is given, ")
|
|
parser.add_argument("--batch_size", default=1, type=int,
|
|
help="number of images to be processed at the same time")
|
|
parser.add_argument("--weights", default="yolov4.weights",
|
|
help="yolo weights path")
|
|
parser.add_argument("--dont_show", action='store_true',
|
|
help="windown inference display. For headless systems")
|
|
parser.add_argument("--ext_output", action='store_true',
|
|
help="display bbox coordinates of detected objects")
|
|
parser.add_argument("--save_labels", action='store_true',
|
|
help="save detections bbox for each image in yolo format")
|
|
parser.add_argument("--config_file", default="./cfg/yolov4.cfg",
|
|
help="path to config file")
|
|
parser.add_argument("--data_file", default="./cfg/coco.data",
|
|
help="path to data file")
|
|
parser.add_argument("--thresh", type=float, default=.25,
|
|
help="remove detections with lower confidence")
|
|
return parser.parse_args()
|
|
|
|
|
|
def check_arguments_errors(args):
|
|
assert 0 < args.thresh < 1, "Threshold should be a float between zero and one (non-inclusive)"
|
|
if not os.path.exists(args.config_file):
|
|
raise(ValueError("Invalid config path {}".format(os.path.abspath(args.config_file))))
|
|
if not os.path.exists(args.weights):
|
|
raise(ValueError("Invalid weight path {}".format(os.path.abspath(args.weights))))
|
|
if not os.path.exists(args.data_file):
|
|
raise(ValueError("Invalid data file path {}".format(os.path.abspath(args.data_file))))
|
|
if args.input and not os.path.exists(args.input):
|
|
raise(ValueError("Invalid image path {}".format(os.path.abspath(args.input))))
|
|
|
|
|
|
def check_batch_shape(images, batch_size):
|
|
"""
|
|
Image sizes should be the same width and height
|
|
"""
|
|
shapes = [image.shape for image in images]
|
|
if len(set(shapes)) > 1:
|
|
raise ValueError("Images don't have same shape")
|
|
if len(shapes) > batch_size:
|
|
raise ValueError("Batch size higher than number of images")
|
|
return shapes[0]
|
|
|
|
|
|
def load_images(images_path):
|
|
"""
|
|
If image path is given, return it directly
|
|
For txt file, read it and return each line as image path
|
|
In other case, it's a folder, return a list with names of each
|
|
jpg, jpeg and png file
|
|
"""
|
|
input_path_extension = images_path.split('.')[-1]
|
|
if input_path_extension in ['jpg', 'jpeg', 'png']:
|
|
return [images_path]
|
|
elif input_path_extension == "txt":
|
|
with open(images_path, "r") as f:
|
|
return f.read().splitlines()
|
|
else:
|
|
return glob.glob(
|
|
os.path.join(images_path, "*.jpg")) + \
|
|
glob.glob(os.path.join(images_path, "*.png")) + \
|
|
glob.glob(os.path.join(images_path, "*.jpeg"))
|
|
|
|
|
|
def prepare_batch(images, network, channels=3):
|
|
width = darknet.network_width(network)
|
|
height = darknet.network_height(network)
|
|
|
|
darknet_images = []
|
|
for image in images:
|
|
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
image_resized = cv2.resize(image_rgb, (width, height),
|
|
interpolation=cv2.INTER_LINEAR)
|
|
custom_image = image_resized.transpose(2, 0, 1)
|
|
darknet_images.append(custom_image)
|
|
|
|
batch_array = np.concatenate(darknet_images, axis=0)
|
|
batch_array = np.ascontiguousarray(batch_array.flat, dtype=np.float32)/255.0
|
|
darknet_images = batch_array.ctypes.data_as(darknet.POINTER(darknet.c_float))
|
|
return darknet.IMAGE(width, height, channels, darknet_images)
|
|
|
|
|
|
def image_detection(image_or_path, network, class_names, class_colors, thresh):
|
|
# Darknet doesn't accept numpy images.
|
|
# Create one with image we reuse for each detect
|
|
width = darknet.network_width(network)
|
|
height = darknet.network_height(network)
|
|
darknet_image = darknet.make_image(width, height, 3)
|
|
|
|
if type(image_or_path) == "str":
|
|
image = cv2.imread(image_or_path)
|
|
else:
|
|
image = image_or_path
|
|
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
image_resized = cv2.resize(image_rgb, (width, height),
|
|
interpolation=cv2.INTER_LINEAR)
|
|
|
|
darknet.copy_image_from_bytes(darknet_image, image_resized.tobytes())
|
|
detections = darknet.detect_image(network, class_names, darknet_image, thresh=thresh)
|
|
darknet.free_image(darknet_image)
|
|
image = darknet.draw_boxes(detections, image_resized, class_colors)
|
|
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB), detections
|
|
|
|
|
|
def batch_detection(network, images, class_names, class_colors,
|
|
thresh=0.25, hier_thresh=.5, nms=.45, batch_size=4):
|
|
image_height, image_width, _ = check_batch_shape(images, batch_size)
|
|
darknet_images = prepare_batch(images, network)
|
|
batch_detections = darknet.network_predict_batch(network, darknet_images, batch_size, image_width,
|
|
image_height, thresh, hier_thresh, None, 0, 0)
|
|
batch_predictions = []
|
|
for idx in range(batch_size):
|
|
num = batch_detections[idx].num
|
|
detections = batch_detections[idx].dets
|
|
if nms:
|
|
darknet.do_nms_obj(detections, num, len(class_names), nms)
|
|
predictions = darknet.remove_negatives(detections, class_names, num)
|
|
images[idx] = darknet.draw_boxes(predictions, images[idx], class_colors)
|
|
batch_predictions.append(predictions)
|
|
darknet.free_batch_detections(batch_detections, batch_size)
|
|
return images, batch_predictions
|
|
|
|
|
|
def image_classification(image, network, class_names):
|
|
width = darknet.network_width(network)
|
|
height = darknet.network_height(network)
|
|
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
image_resized = cv2.resize(image_rgb, (width, height),
|
|
interpolation=cv2.INTER_LINEAR)
|
|
darknet_image = darknet.make_image(width, height, 3)
|
|
darknet.copy_image_from_bytes(darknet_image, image_resized.tobytes())
|
|
detections = darknet.predict_image(network, darknet_image)
|
|
predictions = [(name, detections[idx]) for idx, name in enumerate(class_names)]
|
|
darknet.free_image(darknet_image)
|
|
return sorted(predictions, key=lambda x: -x[1])
|
|
|
|
|
|
def convert2relative(image, bbox):
|
|
"""
|
|
YOLO format use relative coordinates for annotation
|
|
"""
|
|
x, y, w, h = bbox
|
|
height, width, _ = image.shape
|
|
return x/width, y/height, w/width, h/height
|
|
|
|
|
|
def save_annotations(name, image, detections, class_names):
|
|
"""
|
|
Files saved with image_name.txt and relative coordinates
|
|
"""
|
|
file_name = os.path.splitext(name)[0] + ".txt"
|
|
with open(file_name, "w") as f:
|
|
for label, confidence, bbox in detections:
|
|
x, y, w, h = convert2relative(image, bbox)
|
|
label = class_names.index(label)
|
|
f.write("{} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}\n".format(label, x, y, w, h, float(confidence)))
|
|
|
|
|
|
def batch_detection_example():
|
|
args = parser()
|
|
check_arguments_errors(args)
|
|
batch_size = 3
|
|
random.seed(3) # deterministic bbox colors
|
|
network, class_names, class_colors = darknet.load_network(
|
|
args.config_file,
|
|
args.data_file,
|
|
args.weights,
|
|
batch_size=batch_size
|
|
)
|
|
image_names = ['data/horses.jpg', 'data/horses.jpg', 'data/eagle.jpg']
|
|
images = [cv2.imread(image) for image in image_names]
|
|
images, detections, = batch_detection(network, images, class_names,
|
|
class_colors, batch_size=batch_size)
|
|
for name, image in zip(image_names, images):
|
|
cv2.imwrite(name.replace("data/", ""), image)
|
|
print(detections)
|
|
|
|
|
|
def main():
|
|
args = parser()
|
|
check_arguments_errors(args)
|
|
|
|
random.seed(3) # deterministic bbox colors
|
|
network, class_names, class_colors = darknet.load_network(
|
|
args.config_file,
|
|
args.data_file,
|
|
args.weights,
|
|
batch_size=args.batch_size
|
|
)
|
|
|
|
images = load_images(args.input)
|
|
|
|
index = 0
|
|
while True:
|
|
# loop asking for new image paths if no list is given
|
|
if args.input:
|
|
if index >= len(images):
|
|
break
|
|
image_name = images[index]
|
|
else:
|
|
image_name = input("Enter Image Path: ")
|
|
prev_time = time.time()
|
|
image, detections = image_detection(
|
|
image_name, network, class_names, class_colors, args.thresh
|
|
)
|
|
if args.save_labels:
|
|
save_annotations(image_name, image, detections, class_names)
|
|
darknet.print_detections(detections, args.ext_output)
|
|
fps = int(1/(time.time() - prev_time))
|
|
print("FPS: {}".format(fps))
|
|
if not args.dont_show:
|
|
cv2.imshow('Inference', image)
|
|
if cv2.waitKey() & 0xFF == ord('q'):
|
|
break
|
|
index += 1
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# unconmment next line for an example of batch processing
|
|
# batch_detection_example()
|
|
main()
|