mirror of https://github.com/AlexeyAB/darknet.git
🔥 🔥 :dragonite:
This commit is contained in:
parent
648407a5e3
commit
fc9b867dd9
|
@ -4,7 +4,7 @@
|
|||
|
||||
avgpool_layer make_avgpool_layer(int batch, int w, int h, int c)
|
||||
{
|
||||
fprintf(stderr, "Avgpool Layer: %d x %d x %d image\n", w,h,c);
|
||||
fprintf(stderr, "avg %4d x%4d x%4d -> %4d\n", w, h, c, c);
|
||||
avgpool_layer l = {0};
|
||||
l.type = AVGPOOL;
|
||||
l.batch = batch;
|
||||
|
|
|
@ -100,7 +100,7 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT
|
|||
}
|
||||
#endif
|
||||
l.activation = activation;
|
||||
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
fprintf(stderr, "connected %4d -> %4d\n", inputs, outputs);
|
||||
return l;
|
||||
}
|
||||
|
||||
|
|
|
@ -300,7 +300,7 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
|||
l.workspace_size = get_workspace_size(l);
|
||||
l.activation = activation;
|
||||
|
||||
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
||||
fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
|
||||
|
||||
return l;
|
||||
}
|
||||
|
|
|
@ -31,7 +31,7 @@ char *get_cost_string(COST_TYPE a)
|
|||
|
||||
cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type, float scale)
|
||||
{
|
||||
fprintf(stderr, "Cost Layer: %d inputs\n", inputs);
|
||||
fprintf(stderr, "cost %4d\n", inputs);
|
||||
cost_layer l = {0};
|
||||
l.type = COST;
|
||||
|
||||
|
|
|
@ -136,15 +136,19 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
|
|||
|
||||
i = get_current_batch(net);
|
||||
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
||||
if(i%100==0 || (i < 1000 && i%100 == 0)){
|
||||
if(i%1000==0 || (i < 1000 && i%100 == 0)){
|
||||
#ifdef GPU
|
||||
if(ngpus != 1) sync_nets(nets, ngpus, 0);
|
||||
#endif
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
free_data(train);
|
||||
}
|
||||
#ifdef GPU
|
||||
if(ngpus != 1) sync_nets(nets, ngpus, 0);
|
||||
#endif
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
||||
save_weights(net, buff);
|
||||
|
|
|
@ -6,7 +6,6 @@
|
|||
|
||||
dropout_layer make_dropout_layer(int batch, int inputs, float probability)
|
||||
{
|
||||
fprintf(stderr, "Dropout Layer: %d inputs, %f probability\n", inputs, probability);
|
||||
dropout_layer l = {0};
|
||||
l.type = DROPOUT;
|
||||
l.probability = probability;
|
||||
|
@ -22,6 +21,7 @@ dropout_layer make_dropout_layer(int batch, int inputs, float probability)
|
|||
l.backward_gpu = backward_dropout_layer_gpu;
|
||||
l.rand_gpu = cuda_make_array(l.rand, inputs*batch);
|
||||
#endif
|
||||
fprintf(stderr, "dropout p = %.2f %4d -> %4d\n", probability, inputs, inputs);
|
||||
return l;
|
||||
}
|
||||
|
||||
|
|
|
@ -20,7 +20,6 @@ image get_maxpool_delta(maxpool_layer l)
|
|||
|
||||
maxpool_layer make_maxpool_layer(int batch, int h, int w, int c, int size, int stride, int padding)
|
||||
{
|
||||
fprintf(stderr, "Maxpool Layer: %d x %d x %d image, %d size, %d stride\n", h,w,c,size,stride);
|
||||
maxpool_layer l = {0};
|
||||
l.type = MAXPOOL;
|
||||
l.batch = batch;
|
||||
|
@ -48,6 +47,7 @@ maxpool_layer make_maxpool_layer(int batch, int h, int w, int c, int size, int s
|
|||
l.output_gpu = cuda_make_array(l.output, output_size);
|
||||
l.delta_gpu = cuda_make_array(l.delta, output_size);
|
||||
#endif
|
||||
fprintf(stderr, "max %d x %d / %d %4d x%4d x%4d -> %4d x%4d x%4d\n", size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
|
||||
return l;
|
||||
}
|
||||
|
||||
|
|
|
@ -610,9 +610,10 @@ network parse_network_cfg(char *filename)
|
|||
n = n->next;
|
||||
int count = 0;
|
||||
free_section(s);
|
||||
fprintf(stderr, "layer filters size input output\n");
|
||||
while(n){
|
||||
params.index = count;
|
||||
fprintf(stderr, "%d: ", count);
|
||||
fprintf(stderr, "%5d ", count);
|
||||
s = (section *)n->val;
|
||||
options = s->options;
|
||||
layer l = {0};
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
softmax_layer make_softmax_layer(int batch, int inputs, int groups)
|
||||
{
|
||||
assert(inputs%groups == 0);
|
||||
fprintf(stderr, "Softmax Layer: %d inputs\n", inputs);
|
||||
fprintf(stderr, "softmax %4d\n", inputs);
|
||||
softmax_layer l = {0};
|
||||
l.type = SOFTMAX;
|
||||
l.batch = batch;
|
||||
|
|
Loading…
Reference in New Issue