mirror of https://github.com/AlexeyAB/darknet.git
Update README.md
This commit is contained in:
parent
c5b8bc7f24
commit
f83231fa1d
|
@ -214,6 +214,7 @@ You can get cfg-files by path: `darknet/cfg/`
|
|||
* **TensorRT** YOLOv4 on TensorRT+tkDNN: https://github.com/ceccocats/tkDNN
|
||||
For YOLOv3 (-70% faster inference): [Yolo is natively supported in DeepStream 4.0](https://news.developer.nvidia.com/deepstream-sdk-4-now-available/) read [PDF](https://docs.nvidia.com/metropolis/deepstream/Custom_YOLO_Model_in_the_DeepStream_YOLO_App.pdf). [wang-xinyu/tensorrtx](https://github.com/wang-xinyu/tensorrtx) implemented yolov3-spp, yolov4, etc.
|
||||
* **Deepstream 5.0 / TensorRT for YOLOv4** https://github.com/NVIDIA-AI-IOT/yolov4_deepstream or https://github.com/marcoslucianops/DeepStream-Yolo
|
||||
* **Triton Inference Server / TensorRT** https://github.com/isarsoft/yolov4-triton-tensorrt
|
||||
* **Xilinx Zynq Ultrascale+ Deep Learning Processor (DPU) ZCU102/ZCU104:** https://github.com/Xilinx/Vitis-In-Depth-Tutorial/tree/master/Machine_Learning/Design_Tutorials/07-yolov4-tutorial
|
||||
* **Amazon Neurochip / Amazon EC2 Inf1 instances** 1.85 times higher throughput and 37% lower cost per image for TensorFlow based YOLOv4 model, using Keras [URL](https://aws.amazon.com/ru/blogs/machine-learning/improving-performance-for-deep-learning-based-object-detection-with-an-aws-neuron-compiled-yolov4-model-on-aws-inferentia/)
|
||||
* **TVM** - compilation of deep learning models (Keras, MXNet, PyTorch, Tensorflow, CoreML, DarkNet) into minimum deployable modules on diverse hardware backends (CPUs, GPUs, FPGA, and specialized accelerators): https://tvm.ai/about
|
||||
|
|
Loading…
Reference in New Issue