mirror of https://github.com/AlexeyAB/darknet.git
Updates README
This commit is contained in:
parent
3af6781de2
commit
f7c13cf84a
|
@ -173,7 +173,7 @@ You can get cfg-files by path: `darknet/cfg/`
|
|||
|
||||
* **TensorFlow:** YOLOv4 on TensorFlow 2.0 / TFlite / Andriod: https://github.com/hunglc007/tensorflow-yolov4-tflite
|
||||
For YOLOv3 - convert `yolov3.weights`/`cfg` files to `yolov3.ckpt`/`pb/meta`: by using [mystic123](https://github.com/mystic123/tensorflow-yolo-v3) project, and [TensorFlow-lite](https://www.tensorflow.org/lite/guide/get_started#2_convert_the_model_format)
|
||||
* **OpenCV-dnn** the fastest implementation of YOLOv4 for CPU (x86/ARM-Android), OpenCV can be compiled with [OpenVINO-backend](https://github.com/opencv/opencv/wiki/Intel's-Deep-Learning-Inference-Engine-backend) for running on (Myriad X / USB Neural Compute Stick / Arria FPGA), use `yolov3.weights`/`cfg` with: [C++ example](https://github.com/opencv/opencv/blob/8c25a8eb7b10fb50cda323ee6bec68aa1a9ce43c/samples/dnn/object_detection.cpp#L192-L221) or [Python example](https://github.com/opencv/opencv/blob/8c25a8eb7b10fb50cda323ee6bec68aa1a9ce43c/samples/dnn/object_detection.py#L129-L150)
|
||||
* **OpenCV-dnn** the fastest implementation of YOLOv4 for CPU (x86/ARM-Android), OpenCV can be compiled with [OpenVINO-backend](https://github.com/opencv/opencv/wiki/Intel's-Deep-Learning-Inference-Engine-backend) for running on (Myriad X / USB Neural Compute Stick / Arria FPGA), use `yolov4.weights`/`cfg` with: [C++ example](https://github.com/opencv/opencv/blob/8c25a8eb7b10fb50cda323ee6bec68aa1a9ce43c/samples/dnn/object_detection.cpp#L192-L221) or [Python example](https://github.com/opencv/opencv/blob/8c25a8eb7b10fb50cda323ee6bec68aa1a9ce43c/samples/dnn/object_detection.py#L129-L150)
|
||||
* **Intel OpenVINO 2019 R1:** (Myriad X / USB Neural Compute Stick / Arria FPGA): read this [manual](https://software.intel.com/en-us/articles/OpenVINO-Using-TensorFlow#converting-a-darknet-yolo-model)
|
||||
* **Tencent/ncnn:** the fastest inference of YOLOv4 on mobile phone CPU: https://github.com/Tencent/ncnn
|
||||
* **PyTorch > ONNX > CoreML > iOS** how to convert cfg/weights-files to pt-file: [ultralytics/yolov3](https://github.com/ultralytics/yolov3#darknet-conversion) and [iOS App](https://itunes.apple.com/app/id1452689527)
|
||||
|
|
Loading…
Reference in New Issue