mirror of https://github.com/AlexeyAB/darknet.git
Fix
This commit is contained in:
parent
dda993f3dd
commit
f558d5c39c
|
@ -148,7 +148,9 @@ void cudnn_convolutional_setup(layer *l, int cudnn_preference)
|
|||
cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
|
||||
#endif
|
||||
// Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH
|
||||
#if(CUDNN_MAJOR >= 7)
|
||||
cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH);
|
||||
#endif
|
||||
|
||||
// INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported
|
||||
// on architectures with DP4A support (compute capability 6.1 and later).
|
||||
|
|
|
@ -56,7 +56,7 @@ class MJPGWriter
|
|||
int timeout; // master sock timeout, shutdown after timeout millis.
|
||||
int quality; // jpeg compression [1..100]
|
||||
|
||||
int _write(int sock, char *s, int len)
|
||||
int _write(int sock, char const*const s, int len)
|
||||
{
|
||||
if (len < 1) { len = strlen(s); }
|
||||
return ::send(sock, s, len, 0);
|
||||
|
@ -128,7 +128,7 @@ public:
|
|||
params.push_back(IMWRITE_JPEG_QUALITY);
|
||||
params.push_back(quality);
|
||||
cv::imencode(".jpg", frame, outbuf, params);
|
||||
unsigned int outlen = outbuf.size();
|
||||
size_t outlen = outbuf.size();
|
||||
|
||||
#ifdef _WIN32
|
||||
for (unsigned i = 0; i<rread.fd_count; i++)
|
||||
|
@ -169,7 +169,7 @@ public:
|
|||
else // existing client, just stream pix
|
||||
{
|
||||
char head[400];
|
||||
sprintf(head, "--mjpegstream\r\nContent-Type: image/jpeg\r\nContent-Length: %lu\r\n\r\n", outlen);
|
||||
sprintf(head, "--mjpegstream\r\nContent-Type: image/jpeg\r\nContent-Length: %zu\r\n\r\n", outlen);
|
||||
_write(s, head, 0);
|
||||
int n = _write(s, (char*)(&outbuf[0]), outlen);
|
||||
//cerr << "known client " << s << " " << n << endl;
|
||||
|
|
|
@ -356,7 +356,7 @@ int resize_network(network *net, int w, int h)
|
|||
//fflush(stderr);
|
||||
for (i = 0; i < net->n; ++i){
|
||||
layer l = net->layers[i];
|
||||
printf(" %d: layer = %d,", i, l.type);
|
||||
//printf(" %d: layer = %d,", i, l.type);
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
resize_convolutional_layer(&l, w, h);
|
||||
}else if(l.type == CROP){
|
||||
|
|
Loading…
Reference in New Issue