Fixed [Gaussian_yolo] layer (tested for training and detection)

This commit is contained in:
AlexeyAB 2019-10-26 01:29:41 +03:00
parent 72f6de30b2
commit f18338de26
4 changed files with 127 additions and 47 deletions

View File

@ -20,7 +20,7 @@
#define M_PI 3.141592
#endif
layer make_gaussian_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes)
layer make_gaussian_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes)
{
int i;
layer l = { (LAYER_TYPE)0 };
@ -36,21 +36,22 @@ layer make_gaussian_yolo_layer(int batch, int w, int h, int n, int total, int *m
l.out_h = l.h;
l.out_c = l.c;
l.classes = classes;
l.cost = calloc(1, sizeof(float));
l.biases = calloc(total*2, sizeof(float));
l.cost = (float*)calloc(1, sizeof(float));
l.biases = (float*)calloc(total*2, sizeof(float));
if(mask) l.mask = mask;
else{
l.mask = calloc(n, sizeof(int));
l.mask = (int*)calloc(n, sizeof(int));
for(i = 0; i < n; ++i){
l.mask[i] = i;
}
}
l.bias_updates = calloc(n*2, sizeof(float));
l.bias_updates = (float*)calloc(n*2, sizeof(float));
l.outputs = h*w*n*(classes + 8 + 1);
l.inputs = l.outputs;
l.truths = 90*(4 + 1);
l.delta = calloc(batch*l.outputs, sizeof(float));
l.output = calloc(batch*l.outputs, sizeof(float));
l.max_boxes = max_boxes;
l.truths = l.max_boxes*(4 + 1);
l.delta = (float*)calloc(batch*l.outputs, sizeof(float));
l.output = (float*)calloc(batch*l.outputs, sizeof(float));
for(i = 0; i < total*2; ++i){
l.biases[i] = .5;
}
@ -62,10 +63,26 @@ layer make_gaussian_yolo_layer(int batch, int w, int h, int n, int total, int *m
l.backward_gpu = backward_gaussian_yolo_layer_gpu;
l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
/*
free(l.output);
if (cudaSuccess == cudaHostAlloc(&l.output, batch*l.outputs * sizeof(float), cudaHostRegisterMapped)) l.output_pinned = 1;
else {
cudaGetLastError(); // reset CUDA-error
l.output = (float*)calloc(batch * l.outputs, sizeof(float));
}
free(l.delta);
if (cudaSuccess == cudaHostAlloc(&l.delta, batch*l.outputs * sizeof(float), cudaHostRegisterMapped)) l.delta_pinned = 1;
else {
cudaGetLastError(); // reset CUDA-error
l.delta = (float*)calloc(batch * l.outputs, sizeof(float));
}
*/
#endif
fprintf(stderr, "Gaussian_yolo\n");
srand(0);
srand(time(0));
return l;
}
@ -78,10 +95,33 @@ void resize_gaussian_yolo_layer(layer *l, int w, int h)
l->outputs = h*w*l->n*(l->classes + 8 + 1);
l->inputs = l->outputs;
l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));
l->output = realloc(l->output, l->batch*l->outputs * sizeof(float));
l->delta = realloc(l->delta, l->batch*l->outputs * sizeof(float));
//if (!l->output_pinned) l->output = (float*)realloc(l->output, l->batch*l->outputs * sizeof(float));
//if (!l->delta_pinned) l->delta = (float*)realloc(l->delta, l->batch*l->outputs * sizeof(float));
#ifdef GPU
/*
if (l->output_pinned) {
cudaFreeHost(l->output);
if (cudaSuccess != cudaHostAlloc(&l->output, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
cudaGetLastError(); // reset CUDA-error
l->output = (float*)realloc(l->output, l->batch * l->outputs * sizeof(float));
l->output_pinned = 0;
}
}
if (l->delta_pinned) {
cudaFreeHost(l->delta);
if (cudaSuccess != cudaHostAlloc(&l->delta, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
cudaGetLastError(); // reset CUDA-error
l->delta = (float*)realloc(l->delta, l->batch * l->outputs * sizeof(float));
l->delta_pinned = 0;
}
}
*/
cuda_free(l->delta_gpu);
cuda_free(l->output_gpu);
@ -168,10 +208,10 @@ static int entry_gaussian_index(layer l, int batch, int location, int entry)
return batch*l.outputs + n*l.w*l.h*(8+l.classes+1) + entry*l.w*l.h + loc;
}
void forward_gaussian_yolo_layer(const layer l, network net)
void forward_gaussian_yolo_layer(const layer l, network_state state)
{
int i,j,b,t,n;
memcpy(l.output, net.input, l.outputs*l.batch*sizeof(float));
memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
#ifndef GPU
for (b = 0; b < l.batch; ++b){
@ -196,7 +236,7 @@ void forward_gaussian_yolo_layer(const layer l, network net)
#endif
memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
if(!net.train) return;
if (!state.train) return;
float avg_iou = 0;
float recall = 0;
float recall75 = 0;
@ -211,11 +251,11 @@ void forward_gaussian_yolo_layer(const layer l, network net)
for (i = 0; i < l.w; ++i) {
for (n = 0; n < l.n; ++n) {
int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0);
box pred = get_gaussian_yolo_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, net.w, net.h, l.w*l.h);
box pred = get_gaussian_yolo_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.w*l.h);
float best_iou = 0;
int best_t = 0;
for(t = 0; t < l.max_boxes; ++t){
box truth = float_to_box_stride(net.truth + t*(4 + 1) + b*l.truths, 1);
box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1);
if(!truth.x) break;
float iou = box_iou(pred, truth);
if (iou > best_iou) {
@ -232,18 +272,18 @@ void forward_gaussian_yolo_layer(const layer l, network net)
if (best_iou > l.truth_thresh) {
l.delta[obj_index] = 1 - l.output[obj_index];
int class = net.truth[best_t*(4 + 1) + b*l.truths + 4];
int class = state.truth[best_t*(4 + 1) + b*l.truths + 4];
if (l.map) class = l.map[class];
int class_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 9);
delta_gaussian_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, 0);
box truth = float_to_box_stride(net.truth + best_t*(4 + 1) + b*l.truths, 1);
delta_gaussian_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, net.w, net.h, l.delta, (2-truth.w*truth.h), l.w*l.h);
box truth = float_to_box_stride(state.truth + best_t*(4 + 1) + b*l.truths, 1);
delta_gaussian_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h);
}
}
}
}
for(t = 0; t < l.max_boxes; ++t){
box truth = float_to_box_stride(net.truth + t*(4 + 1) + b*l.truths, 1);
box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1);
if(!truth.x) break;
float best_iou = 0;
@ -254,8 +294,8 @@ void forward_gaussian_yolo_layer(const layer l, network net)
truth_shift.x = truth_shift.y = 0;
for(n = 0; n < l.total; ++n){
box pred = {0};
pred.w = l.biases[2*n]/net.w;
pred.h = l.biases[2*n+1]/net.h;
pred.w = l.biases[2*n]/ state.net.w;
pred.h = l.biases[2*n+1]/ state.net.h;
float iou = box_iou(pred, truth_shift);
if (iou > best_iou){
best_iou = iou;
@ -266,13 +306,13 @@ void forward_gaussian_yolo_layer(const layer l, network net)
int mask_n = int_index(l.mask, best_n, l.n);
if(mask_n >= 0){
int box_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0);
float iou = delta_gaussian_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, net.w, net.h, l.delta, (2-truth.w*truth.h), l.w*l.h);
float iou = delta_gaussian_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h);
int obj_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 8);
avg_obj += l.output[obj_index];
l.delta[obj_index] = 1 - l.output[obj_index];
int class = net.truth[t*(4 + 1) + b*l.truths + 4];
int class = state.truth[t*(4 + 1) + b*l.truths + 4];
if (l.map) class = l.map[class];
int class_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 9);
delta_gaussian_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat);
@ -286,19 +326,34 @@ void forward_gaussian_yolo_layer(const layer l, network net)
}
}
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
printf("Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d\n", net.index, avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, recall75/count, count);
printf("Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d\n", state.index, avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, recall75/count, count);
}
void backward_gaussian_yolo_layer(const layer l, network net)
void backward_gaussian_yolo_layer(const layer l, network_state state)
{
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, net.delta, 1);
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
}
void correct_gaussian_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative)
void correct_gaussian_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter)
{
int i;
int new_w=0;
int new_h=0;
if (letter) {
if (((float)netw / w) < ((float)neth / h)) {
new_w = netw;
new_h = (h * netw) / w;
}
else {
new_h = neth;
new_w = (w * neth) / h;
}
}
else {
new_w = netw;
new_h = neth;
}
/*
if (((float)netw/w) < ((float)neth/h)) {
new_w = netw;
new_h = (h * netw)/w;
@ -306,6 +361,7 @@ void correct_gaussian_yolo_boxes(detection *dets, int n, int w, int h, int netw,
new_h = neth;
new_w = (w * neth)/h;
}
*/
for (i = 0; i < n; ++i){
box b = dets[i].bbox;
b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw);
@ -365,7 +421,7 @@ void avg_flipped_gaussian_yolo(layer l)
}
*/
int get_gaussian_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets)
int get_gaussian_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter)
{
int i,j,n;
float *predictions = l.output;
@ -390,22 +446,22 @@ int get_gaussian_yolo_detections(layer l, int w, int h, int netw, int neth, floa
for(j = 0; j < l.classes; ++j){
int class_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 9 + j);
float uc_aver = (dets[count].uc[0] + dets[count].uc[1] + dets[count].uc[2] + dets[count].uc[3])/4.0;
float uc_aver = (dets[count].uc[0] + dets[count].uc[1] + dets[count].uc[2] + dets[count].uc[3]) / 4.0;
float prob = objectness*predictions[class_index]*(1.0-uc_aver);
dets[count].prob[j] = (prob > thresh) ? prob : 0;
}
++count;
}
}
correct_gaussian_yolo_boxes(dets, count, w, h, netw, neth, relative);
correct_gaussian_yolo_boxes(dets, count, w, h, netw, neth, relative, letter);
return count;
}
#ifdef GPU
void forward_gaussian_yolo_layer_gpu(const layer l, network net)
void forward_gaussian_yolo_layer_gpu(const layer l, network_state state)
{
copy_ongpu(l.batch*l.inputs, net.input_gpu, 1, l.output_gpu, 1);
copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
int b, n;
for (b = 0; b < l.batch; ++b)
{
@ -428,18 +484,38 @@ void forward_gaussian_yolo_layer_gpu(const layer l, network net)
activate_array_ongpu(l.output_gpu + index, (1+l.classes)*l.w*l.h, LOGISTIC);
}
}
if(!net.train || l.onlyforward){
cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
if (!state.train || l.onlyforward) {
//cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
cuda_pull_array_async(l.output_gpu, l.output, l.batch*l.outputs);
CHECK_CUDA(cudaPeekAtLastError());
return;
}
cuda_pull_array(l.output_gpu, net.input, l.batch*l.inputs);
forward_gaussian_yolo_layer(l, net);
float *in_cpu = (float *)calloc(l.batch*l.inputs, sizeof(float));
cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
memcpy(in_cpu, l.output, l.batch*l.outputs * sizeof(float));
float *truth_cpu = 0;
if (state.truth) {
int num_truth = l.batch*l.truths;
truth_cpu = (float *)calloc(num_truth, sizeof(float));
cuda_pull_array(state.truth, truth_cpu, num_truth);
}
network_state cpu_state = state;
cpu_state.net = state.net;
cpu_state.index = state.index;
cpu_state.train = state.train;
cpu_state.truth = truth_cpu;
cpu_state.input = in_cpu;
forward_gaussian_yolo_layer(l, cpu_state);
//forward_yolo_layer(l, state);
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
free(in_cpu);
if (cpu_state.truth) free(cpu_state.truth);
}
void backward_gaussian_yolo_layer_gpu(const layer l, network net)
void backward_gaussian_yolo_layer_gpu(const layer l, network_state state)
{
axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, net.delta_gpu, 1);
axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
}
#endif

View File

@ -6,15 +6,17 @@
#include "layer.h"
#include "network.h"
layer make_gaussian_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes);
void forward_gaussian_yolo_layer(const layer l, network net);
void backward_gaussian_yolo_layer(const layer l, network net);
layer make_gaussian_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes);
void forward_gaussian_yolo_layer(const layer l, network_state state);
void backward_gaussian_yolo_layer(const layer l, network_state state);
void resize_gaussian_yolo_layer(layer *l, int w, int h);
int gaussian_yolo_num_detections(layer l, float thresh);
int get_gaussian_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter);
void correct_gaussian_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter);
#ifdef GPU
void forward_gaussian_yolo_layer_gpu(const layer l, network net);
void backward_gaussian_yolo_layer_gpu(layer l, network net);
void forward_gaussian_yolo_layer_gpu(const layer l, network_state state);
void backward_gaussian_yolo_layer_gpu(layer l, network_state state);
#endif
#endif

View File

@ -714,7 +714,7 @@ detection *make_network_boxes(network *net, float thresh, int *num)
for (i = 0; i < nboxes; ++i) {
dets[i].prob = (float*)calloc(l.classes, sizeof(float));
// tx,ty,tw,th uncertainty
dets[i].uc = calloc(4, sizeof(float)); // Gaussian_YOLOv3
dets[i].uc = (float*)calloc(4, sizeof(float)); // Gaussian_YOLOv3
if (l.coords > 4) {
dets[i].mask = (float*)calloc(l.coords - 4, sizeof(float));
}
@ -762,7 +762,7 @@ void fill_network_boxes(network *net, int w, int h, float thresh, float hier, in
}
}
if (l.type == GAUSSIAN_YOLO) {
int count = get_gaussian_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets);
int count = get_gaussian_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
dets += count;
}
if (l.type == REGION) {
@ -789,6 +789,7 @@ void free_detections(detection *dets, int n)
int i;
for (i = 0; i < n; ++i) {
free(dets[i].prob);
if (dets[i].uc) free(dets[i].uc);
if (dets[i].mask) free(dets[i].mask);
}
free(dets);

View File

@ -424,12 +424,13 @@ int *parse_gaussian_yolo_mask(char *a, int *num) // Gaussian_YOLOv3
layer parse_gaussian_yolo(list *options, size_params params) // Gaussian_YOLOv3
{
int classes = option_find_int(options, "classes", 20);
int max_boxes = option_find_int_quiet(options, "max", 90);
int total = option_find_int(options, "num", 1);
int num = total;
char *a = option_find_str(options, "mask", 0);
int *mask = parse_gaussian_yolo_mask(a, &num);
layer l = make_gaussian_yolo_layer(params.batch, params.w, params.h, num, total, mask, classes);
layer l = make_gaussian_yolo_layer(params.batch, params.w, params.h, num, total, mask, classes, max_boxes);
assert(l.outputs == params.inputs);
l.max_boxes = option_find_int_quiet(options, "max", 90);