Update Readme.md

This commit is contained in:
Alexey 2020-05-25 21:29:02 +03:00 committed by GitHub
parent 9697fdb81b
commit e6469eb071
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 15 additions and 2 deletions

View File

@ -40,9 +40,22 @@ More details: http://pjreddie.com/darknet/yolo/
| ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) |   ![readme](https://user-images.githubusercontent.com/4096485/80213782-5f1e3480-8642-11ea-8fdf-0e6b9a6b5f4c.png) AP50:95 / AP50 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2004.10934 |
| ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) |   ![modern_gpus](https://user-images.githubusercontent.com/4096485/82835867-f1c62380-9ecd-11ea-9134-1598ed2abc4b.png) AP50:95 / AP50 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2004.10934 |
|---|---|
tkDNN-TensorRT accelerates YOLOv4 **~2x** times for batch=1 and **3x-4x** times for batch=4.
OpenCV-dnn is ~10% slower than tkDNN-TensorRT.
* tkDNN: https://github.com/ceccocats/tkDNN
* OpenCV: https://gist.github.com/YashasSamaga/48bdb167303e10f4d07b754888ddbdcf
**GeForce RTX 2080 Ti:**
| Network Size | Darknet, FPS (avg)| tkDNN TensorRT FP32, FPS | tkDNN TensorRT FP16, FPS | OpenCV FP16, FPS | tkDNN TensorRT FP16 batch=4, FPS | OpenCV FP16 batch=4, FPS | tkDNN Speedup |
|:-----:|:--------:|--------:|--------:|--------:|--------:|--------:|------:|
|320 | 100 | 116 | **202** | 171 | **423** | 384 | **4.2x** |
|416 | 82 | 103 | **162** | 146 | **284** | 260 | **3.5x** |
|512 | 69 | 91 | **134** | 125 | **206** | 190 | **2.9x** |
|608 | 53 | 62 | **103** | 100 | **150** | 133 | **2.8x** |
* Yolo v4 Full comparison: [map_fps](https://user-images.githubusercontent.com/4096485/80283279-0e303e00-871f-11ea-814c-870967d77fd1.png)
* CSPNet: [paper](https://arxiv.org/abs/1911.11929) and [map_fps](https://user-images.githubusercontent.com/4096485/71702416-6645dc00-2de0-11ea-8d65-de7d4b604021.png) comparison: https://github.com/WongKinYiu/CrossStagePartialNetworks
* Yolo v3 on MS COCO: [Speed / Accuracy (mAP@0.5) chart](https://user-images.githubusercontent.com/4096485/52151356-e5d4a380-2683-11e9-9d7d-ac7bc192c477.jpg)
@ -50,7 +63,7 @@ More details: http://pjreddie.com/darknet/yolo/
* Yolo v2 on Pascal VOC 2007: https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg
* Yolo v2 on Pascal VOC 2012 (comp4): https://hsto.org/files/3a6/fdf/b53/3a6fdfb533f34cee9b52bdd9bb0b19d9.jpg
#### Examples of results
#### Youtube video of results
[![Yolo v4](http://img.youtube.com/vi/1_SiUOYUoOI/0.jpg)](https://youtu.be/1_SiUOYUoOI "Yolo v4")