mirror of https://github.com/AlexeyAB/darknet.git
Add batch inference on C++ (#7915)
* Add batch inference on C++ * Return default params * Add make_nms parameter
This commit is contained in:
parent
5e73447fa8
commit
d669680879
|
@ -56,7 +56,7 @@ struct bbox_t_container {
|
|||
#include <opencv2/imgproc/imgproc_c.h> // C
|
||||
#endif
|
||||
|
||||
extern "C" LIB_API int init(const char *configurationFilename, const char *weightsFilename, int gpu);
|
||||
extern "C" LIB_API int init(const char *configurationFilename, const char *weightsFilename, int gpu, int batch_size);
|
||||
extern "C" LIB_API int detect_image(const char *filename, bbox_t_container &container);
|
||||
extern "C" LIB_API int detect_mat(const uint8_t* data, const size_t data_length, bbox_t_container &container);
|
||||
extern "C" LIB_API int dispose();
|
||||
|
@ -76,11 +76,12 @@ public:
|
|||
float nms = .4;
|
||||
bool wait_stream;
|
||||
|
||||
LIB_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
|
||||
LIB_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0, int batch_size = 1);
|
||||
LIB_API ~Detector();
|
||||
|
||||
LIB_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
|
||||
LIB_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
|
||||
LIB_API std::vector<std::vector<bbox_t>> detectBatch(image_t img, int batch_size, int width, int height, float thresh, bool make_nms = true);
|
||||
static LIB_API image_t load_image(std::string image_filename);
|
||||
static LIB_API void free_image(image_t m);
|
||||
LIB_API int get_net_width() const;
|
||||
|
|
|
@ -27,9 +27,9 @@ extern "C" {
|
|||
//static Detector* detector = NULL;
|
||||
static std::unique_ptr<Detector> detector;
|
||||
|
||||
int init(const char *configurationFilename, const char *weightsFilename, int gpu)
|
||||
int init(const char *configurationFilename, const char *weightsFilename, int gpu, int batch_size)
|
||||
{
|
||||
detector.reset(new Detector(configurationFilename, weightsFilename, gpu));
|
||||
detector.reset(new Detector(configurationFilename, weightsFilename, gpu, batch_size));
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -127,7 +127,8 @@ struct detector_gpu_t {
|
|||
unsigned int *track_id;
|
||||
};
|
||||
|
||||
LIB_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id) : cur_gpu_id(gpu_id)
|
||||
LIB_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id, int batch_size)
|
||||
: cur_gpu_id(gpu_id)
|
||||
{
|
||||
wait_stream = 0;
|
||||
#ifdef GPU
|
||||
|
@ -153,11 +154,11 @@ LIB_API Detector::Detector(std::string cfg_filename, std::string weight_filename
|
|||
char *cfgfile = const_cast<char *>(_cfg_filename.c_str());
|
||||
char *weightfile = const_cast<char *>(_weight_filename.c_str());
|
||||
|
||||
net = parse_network_cfg_custom(cfgfile, 1, 1);
|
||||
net = parse_network_cfg_custom(cfgfile, batch_size, batch_size);
|
||||
if (weightfile) {
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
set_batch_network(&net, 1);
|
||||
set_batch_network(&net, batch_size);
|
||||
net.gpu_index = cur_gpu_id;
|
||||
fuse_conv_batchnorm(net);
|
||||
|
||||
|
@ -354,6 +355,74 @@ LIB_API std::vector<bbox_t> Detector::detect(image_t img, float thresh, bool use
|
|||
return bbox_vec;
|
||||
}
|
||||
|
||||
LIB_API std::vector<std::vector<bbox_t>> Detector::detectBatch(image_t img, int batch_size, int width, int height, float thresh, bool make_nms)
|
||||
{
|
||||
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
network &net = detector_gpu.net;
|
||||
#ifdef GPU
|
||||
int old_gpu_index;
|
||||
cudaGetDevice(&old_gpu_index);
|
||||
if(cur_gpu_id != old_gpu_index)
|
||||
cudaSetDevice(net.gpu_index);
|
||||
|
||||
net.wait_stream = wait_stream; // 1 - wait CUDA-stream, 0 - not to wait
|
||||
#endif
|
||||
//std::cout << "net.gpu_index = " << net.gpu_index << std::endl;
|
||||
|
||||
layer l = net.layers[net.n - 1];
|
||||
|
||||
float hier_thresh = 0.5;
|
||||
image in_img;
|
||||
in_img.c = img.c;
|
||||
in_img.w = img.w;
|
||||
in_img.h = img.h;
|
||||
in_img.data = img.data;
|
||||
det_num_pair* prediction = network_predict_batch(&net, in_img, batch_size, width, height, thresh, hier_thresh, 0, 0, 0);
|
||||
|
||||
std::vector<std::vector<bbox_t>> bbox_vec(batch_size);
|
||||
|
||||
for (int bi = 0; bi < batch_size; ++bi)
|
||||
{
|
||||
auto dets = prediction[bi].dets;
|
||||
|
||||
if (make_nms && nms)
|
||||
do_nms_sort(dets, prediction[bi].num, l.classes, nms);
|
||||
|
||||
for (int i = 0; i < prediction[bi].num; ++i)
|
||||
{
|
||||
box b = dets[i].bbox;
|
||||
int const obj_id = max_index(dets[i].prob, l.classes);
|
||||
float const prob = dets[i].prob[obj_id];
|
||||
|
||||
if (prob > thresh)
|
||||
{
|
||||
bbox_t bbox;
|
||||
bbox.x = std::max((double)0, (b.x - b.w / 2.));
|
||||
bbox.y = std::max((double)0, (b.y - b.h / 2.));
|
||||
bbox.w = b.w;
|
||||
bbox.h = b.h;
|
||||
bbox.obj_id = obj_id;
|
||||
bbox.prob = prob;
|
||||
bbox.track_id = 0;
|
||||
bbox.frames_counter = 0;
|
||||
bbox.x_3d = NAN;
|
||||
bbox.y_3d = NAN;
|
||||
bbox.z_3d = NAN;
|
||||
|
||||
bbox_vec[bi].push_back(bbox);
|
||||
}
|
||||
}
|
||||
}
|
||||
free_batch_detections(prediction, batch_size);
|
||||
|
||||
#ifdef GPU
|
||||
if (cur_gpu_id != old_gpu_index)
|
||||
cudaSetDevice(old_gpu_index);
|
||||
#endif
|
||||
|
||||
return bbox_vec;
|
||||
}
|
||||
|
||||
LIB_API std::vector<bbox_t> Detector::tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history,
|
||||
int const frames_story, int const max_dist)
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue