Update README.md

This commit is contained in:
Alexey 2020-10-11 15:54:55 +03:00 committed by GitHub
parent 91b5dd2da7
commit d65909fbea
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 2 additions and 0 deletions

View File

@ -190,6 +190,8 @@ You can get cfg-files by path: `darknet/cfg/`
* [Tianxiaomo/pytorch-YOLOv4](https://github.com/Tianxiaomo/pytorch-YOLOv4) * [Tianxiaomo/pytorch-YOLOv4](https://github.com/Tianxiaomo/pytorch-YOLOv4)
* **TensorRT** YOLOv4 on TensorRT+tkDNN: https://github.com/ceccocats/tkDNN * **TensorRT** YOLOv4 on TensorRT+tkDNN: https://github.com/ceccocats/tkDNN
For YOLOv3 (-70% faster inference): [Yolo is natively supported in DeepStream 4.0](https://news.developer.nvidia.com/deepstream-sdk-4-now-available/) read [PDF](https://docs.nvidia.com/metropolis/deepstream/Custom_YOLO_Model_in_the_DeepStream_YOLO_App.pdf). [wang-xinyu/tensorrtx](https://github.com/wang-xinyu/tensorrtx) implemented yolov3-spp, yolov4, etc. For YOLOv3 (-70% faster inference): [Yolo is natively supported in DeepStream 4.0](https://news.developer.nvidia.com/deepstream-sdk-4-now-available/) read [PDF](https://docs.nvidia.com/metropolis/deepstream/Custom_YOLO_Model_in_the_DeepStream_YOLO_App.pdf). [wang-xinyu/tensorrtx](https://github.com/wang-xinyu/tensorrtx) implemented yolov3-spp, yolov4, etc.
* **Deepstream 5.0 / TensorRT for YOLOv4** https://github.com/NVIDIA-AI-IOT/yolov4_deepstream
* **Amazon Neurochip / Amazon EC2 Inf1 instances** 1.85 times higher throughput and 37% lower cost per image for TensorFlow based YOLOv4 model, using Keras [URL](https://aws.amazon.com/ru/blogs/machine-learning/improving-performance-for-deep-learning-based-object-detection-with-an-aws-neuron-compiled-yolov4-model-on-aws-inferentia/)
* **TVM** - compilation of deep learning models (Keras, MXNet, PyTorch, Tensorflow, CoreML, DarkNet) into minimum deployable modules on diverse hardware backends (CPUs, GPUs, FPGA, and specialized accelerators): https://tvm.ai/about * **TVM** - compilation of deep learning models (Keras, MXNet, PyTorch, Tensorflow, CoreML, DarkNet) into minimum deployable modules on diverse hardware backends (CPUs, GPUs, FPGA, and specialized accelerators): https://tvm.ai/about
* **OpenDataCam** - It detects, tracks and counts moving objects by using YOLOv4: https://github.com/opendatacam/opendatacam#-hardware-pre-requisite * **OpenDataCam** - It detects, tracks and counts moving objects by using YOLOv4: https://github.com/opendatacam/opendatacam#-hardware-pre-requisite
* **Netron** - Visualizer for neural networks: https://github.com/lutzroeder/netron * **Netron** - Visualizer for neural networks: https://github.com/lutzroeder/netron