mirror of https://github.com/AlexeyAB/darknet.git
Fix thread synchronization bug + many more (#8562)
* Minor: float fps (useful for small values - e.g. CPU) * Fix multiple code readability issues * Better synchoronize threads (when user interrupts video) * Better thread objects handling * Pass data via arguments instead of global like variables - 0 * Minor code readability fixes * CTypes definitions * Pass data via arguments instead of global like variables - 1 * Code reordering + (minor) renames * Pass data via arguments instead of global like variables - 2
This commit is contained in:
parent
ef8ad4ae2d
commit
c87e33eb06
185
darknet.py
185
darknet.py
|
@ -8,49 +8,71 @@ Directly viewing or returning bounding-boxed images requires scikit-image to be
|
|||
Use pip3 instead of pip on some systems to be sure to install modules for python3
|
||||
"""
|
||||
|
||||
from ctypes import *
|
||||
import math
|
||||
import ctypes as ct
|
||||
import random
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
class BOX(Structure):
|
||||
_fields_ = [("x", c_float),
|
||||
("y", c_float),
|
||||
("w", c_float),
|
||||
("h", c_float)]
|
||||
class BOX(ct.Structure):
|
||||
_fields_ = (
|
||||
("x", ct.c_float),
|
||||
("y", ct.c_float),
|
||||
("w", ct.c_float),
|
||||
("h", ct.c_float),
|
||||
)
|
||||
|
||||
|
||||
class DETECTION(Structure):
|
||||
_fields_ = [("bbox", BOX),
|
||||
("classes", c_int),
|
||||
("best_class_idx", c_int),
|
||||
("prob", POINTER(c_float)),
|
||||
("mask", POINTER(c_float)),
|
||||
("objectness", c_float),
|
||||
("sort_class", c_int),
|
||||
("uc", POINTER(c_float)),
|
||||
("points", c_int),
|
||||
("embeddings", POINTER(c_float)),
|
||||
("embedding_size", c_int),
|
||||
("sim", c_float),
|
||||
("track_id", c_int)]
|
||||
|
||||
class DETNUMPAIR(Structure):
|
||||
_fields_ = [("num", c_int),
|
||||
("dets", POINTER(DETECTION))]
|
||||
FloatPtr = ct.POINTER(ct.c_float)
|
||||
IntPtr = ct.POINTER(ct.c_int)
|
||||
|
||||
|
||||
class IMAGE(Structure):
|
||||
_fields_ = [("w", c_int),
|
||||
("h", c_int),
|
||||
("c", c_int),
|
||||
("data", POINTER(c_float))]
|
||||
class DETECTION(ct.Structure):
|
||||
_fields_ = (
|
||||
("bbox", BOX),
|
||||
("classes", ct.c_int),
|
||||
("best_class_idx", ct.c_int),
|
||||
("prob", FloatPtr),
|
||||
("mask", FloatPtr),
|
||||
("objectness", ct.c_float),
|
||||
("sort_class", ct.c_int),
|
||||
("uc", FloatPtr),
|
||||
("points", ct.c_int),
|
||||
("embeddings", FloatPtr),
|
||||
("embedding_size", ct.c_int),
|
||||
("sim", ct.c_float),
|
||||
("track_id", ct.c_int),
|
||||
)
|
||||
|
||||
|
||||
class METADATA(Structure):
|
||||
_fields_ = [("classes", c_int),
|
||||
("names", POINTER(c_char_p))]
|
||||
DETECTIONPtr = ct.POINTER(DETECTION)
|
||||
|
||||
|
||||
class DETNUMPAIR(ct.Structure):
|
||||
_fields_ = (
|
||||
("num", ct.c_int),
|
||||
("dets", DETECTIONPtr),
|
||||
)
|
||||
|
||||
|
||||
DETNUMPAIRPtr = ct.POINTER(DETNUMPAIR)
|
||||
|
||||
|
||||
class IMAGE(ct.Structure):
|
||||
_fields_ = (
|
||||
("w", ct.c_int),
|
||||
("h", ct.c_int),
|
||||
("c", ct.c_int),
|
||||
("data", FloatPtr),
|
||||
)
|
||||
|
||||
|
||||
class METADATA(ct.Structure):
|
||||
_fields_ = (
|
||||
("classes", ct.c_int),
|
||||
("names", ct.POINTER(ct.c_char_p)),
|
||||
)
|
||||
|
||||
|
||||
def network_width(net):
|
||||
|
@ -67,10 +89,10 @@ def bbox2points(bbox):
|
|||
to corner points cv2 rectangle
|
||||
"""
|
||||
x, y, w, h = bbox
|
||||
xmin = int(round(x - (w / 2)))
|
||||
xmax = int(round(x + (w / 2)))
|
||||
ymin = int(round(y - (h / 2)))
|
||||
ymax = int(round(y + (h / 2)))
|
||||
xmin = round(x - (w / 2))
|
||||
xmax = round(x + (w / 2))
|
||||
ymin = round(y - (h / 2))
|
||||
ymax = round(y + (h / 2))
|
||||
return xmin, ymin, xmax, ymax
|
||||
|
||||
|
||||
|
@ -134,6 +156,7 @@ def decode_detection(detections):
|
|||
decoded.append((str(label), confidence, bbox))
|
||||
return decoded
|
||||
|
||||
|
||||
# https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
|
||||
# Malisiewicz et al.
|
||||
def non_max_suppression_fast(detections, overlap_thresh):
|
||||
|
@ -185,6 +208,7 @@ def non_max_suppression_fast(detections, overlap_thresh):
|
|||
# integer data type
|
||||
return [detections[i] for i in pick]
|
||||
|
||||
|
||||
def remove_negatives(detections, class_names, num):
|
||||
"""
|
||||
Remove all classes with 0% confidence within the detection
|
||||
|
@ -218,7 +242,7 @@ def detect_image(network, class_names, image, thresh=.5, hier_thresh=.5, nms=.45
|
|||
"""
|
||||
Returns a list with highest confidence class and their bbox
|
||||
"""
|
||||
pnum = pointer(c_int(0))
|
||||
pnum = ct.pointer(ct.c_int(0))
|
||||
predict_image(network, image)
|
||||
detections = get_network_boxes(network, image.w, image.h,
|
||||
thresh, hier_thresh, None, 0, pnum, 0)
|
||||
|
@ -233,102 +257,105 @@ def detect_image(network, class_names, image, thresh=.5, hier_thresh=.5, nms=.45
|
|||
|
||||
if os.name == "posix":
|
||||
cwd = os.path.dirname(__file__)
|
||||
lib = CDLL(cwd + "/libdarknet.so", RTLD_GLOBAL)
|
||||
lib = ct.CDLL(cwd + "/libdarknet.so", ct.RTLD_GLOBAL)
|
||||
elif os.name == "nt":
|
||||
cwd = os.path.dirname(__file__)
|
||||
os.environ['PATH'] = cwd + ';' + os.environ['PATH']
|
||||
lib = CDLL("darknet.dll", RTLD_GLOBAL)
|
||||
os.environ["PATH"] = os.path.pathsep.join((cwd, os.environ["PATH"]))
|
||||
lib = ct.CDLL("darknet.dll", ct.RTLD_GLOBAL)
|
||||
else:
|
||||
lib = None # Intellisense
|
||||
print("Unsupported OS")
|
||||
exit
|
||||
exit()
|
||||
|
||||
lib.network_width.argtypes = [c_void_p]
|
||||
lib.network_width.restype = c_int
|
||||
lib.network_height.argtypes = [c_void_p]
|
||||
lib.network_height.restype = c_int
|
||||
lib.network_width.argtypes = (ct.c_void_p,)
|
||||
lib.network_width.restype = ct.c_int
|
||||
lib.network_height.argtypes = (ct.c_void_p,)
|
||||
lib.network_height.restype = ct.c_int
|
||||
|
||||
copy_image_from_bytes = lib.copy_image_from_bytes
|
||||
copy_image_from_bytes.argtypes = [IMAGE,c_char_p]
|
||||
copy_image_from_bytes.argtypes = (IMAGE, ct.c_char_p)
|
||||
|
||||
predict = lib.network_predict_ptr
|
||||
predict.argtypes = [c_void_p, POINTER(c_float)]
|
||||
predict.restype = POINTER(c_float)
|
||||
predict.argtypes = (ct.c_void_p, FloatPtr)
|
||||
predict.restype = FloatPtr
|
||||
|
||||
set_gpu = lib.cuda_set_device
|
||||
init_cpu = lib.init_cpu
|
||||
|
||||
make_image = lib.make_image
|
||||
make_image.argtypes = [c_int, c_int, c_int]
|
||||
make_image.argtypes = (ct.c_int, ct.c_int, ct.c_int)
|
||||
make_image.restype = IMAGE
|
||||
|
||||
get_network_boxes = lib.get_network_boxes
|
||||
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int), c_int]
|
||||
get_network_boxes.restype = POINTER(DETECTION)
|
||||
get_network_boxes.argtypes = (ct.c_void_p, ct.c_int, ct.c_int, ct.c_float, ct.c_float, IntPtr, ct.c_int, IntPtr,
|
||||
ct.c_int)
|
||||
get_network_boxes.restype = DETECTIONPtr
|
||||
|
||||
make_network_boxes = lib.make_network_boxes
|
||||
make_network_boxes.argtypes = [c_void_p]
|
||||
make_network_boxes.restype = POINTER(DETECTION)
|
||||
make_network_boxes.argtypes = (ct.c_void_p,)
|
||||
make_network_boxes.restype = DETECTIONPtr
|
||||
|
||||
free_detections = lib.free_detections
|
||||
free_detections.argtypes = [POINTER(DETECTION), c_int]
|
||||
free_detections.argtypes = (DETECTIONPtr, ct.c_int)
|
||||
|
||||
free_batch_detections = lib.free_batch_detections
|
||||
free_batch_detections.argtypes = [POINTER(DETNUMPAIR), c_int]
|
||||
free_batch_detections.argtypes = (DETNUMPAIRPtr, ct.c_int)
|
||||
|
||||
free_ptrs = lib.free_ptrs
|
||||
free_ptrs.argtypes = [POINTER(c_void_p), c_int]
|
||||
free_ptrs.argtypes = (ct.POINTER(ct.c_void_p), ct.c_int)
|
||||
|
||||
network_predict = lib.network_predict_ptr
|
||||
network_predict.argtypes = [c_void_p, POINTER(c_float)]
|
||||
network_predict.argtypes = (ct.c_void_p, FloatPtr)
|
||||
|
||||
reset_rnn = lib.reset_rnn
|
||||
reset_rnn.argtypes = [c_void_p]
|
||||
reset_rnn.argtypes = (ct.c_void_p,)
|
||||
|
||||
load_net = lib.load_network
|
||||
load_net.argtypes = [c_char_p, c_char_p, c_int]
|
||||
load_net.restype = c_void_p
|
||||
load_net.argtypes = (ct.c_char_p, ct.c_char_p, ct.c_int)
|
||||
load_net.restype = ct.c_void_p
|
||||
|
||||
load_net_custom = lib.load_network_custom
|
||||
load_net_custom.argtypes = [c_char_p, c_char_p, c_int, c_int]
|
||||
load_net_custom.restype = c_void_p
|
||||
load_net_custom.argtypes = (ct.c_char_p, ct.c_char_p, ct.c_int, ct.c_int)
|
||||
load_net_custom.restype = ct.c_void_p
|
||||
|
||||
free_network_ptr = lib.free_network_ptr
|
||||
free_network_ptr.argtypes = [c_void_p]
|
||||
free_network_ptr.restype = c_void_p
|
||||
free_network_ptr.argtypes = (ct.c_void_p,)
|
||||
free_network_ptr.restype = ct.c_void_p
|
||||
|
||||
do_nms_obj = lib.do_nms_obj
|
||||
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
|
||||
do_nms_obj.argtypes = (DETECTIONPtr, ct.c_int, ct.c_int, ct.c_float)
|
||||
|
||||
do_nms_sort = lib.do_nms_sort
|
||||
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
|
||||
do_nms_sort.argtypes = (DETECTIONPtr, ct.c_int, ct.c_int, ct.c_float)
|
||||
|
||||
free_image = lib.free_image
|
||||
free_image.argtypes = [IMAGE]
|
||||
free_image.argtypes = (IMAGE,)
|
||||
|
||||
letterbox_image = lib.letterbox_image
|
||||
letterbox_image.argtypes = [IMAGE, c_int, c_int]
|
||||
letterbox_image.argtypes = (IMAGE, ct.c_int, ct.c_int)
|
||||
letterbox_image.restype = IMAGE
|
||||
|
||||
load_meta = lib.get_metadata
|
||||
lib.get_metadata.argtypes = [c_char_p]
|
||||
lib.get_metadata.argtypes = (ct.c_char_p,)
|
||||
lib.get_metadata.restype = METADATA
|
||||
|
||||
load_image = lib.load_image_color
|
||||
load_image.argtypes = [c_char_p, c_int, c_int]
|
||||
load_image.argtypes = (ct.c_char_p, ct.c_int, ct.c_int)
|
||||
load_image.restype = IMAGE
|
||||
|
||||
rgbgr_image = lib.rgbgr_image
|
||||
rgbgr_image.argtypes = [IMAGE]
|
||||
rgbgr_image.argtypes = (IMAGE,)
|
||||
|
||||
predict_image = lib.network_predict_image
|
||||
predict_image.argtypes = [c_void_p, IMAGE]
|
||||
predict_image.restype = POINTER(c_float)
|
||||
predict_image.argtypes = (ct.c_void_p, IMAGE)
|
||||
predict_image.restype = FloatPtr
|
||||
|
||||
predict_image_letterbox = lib.network_predict_image_letterbox
|
||||
predict_image_letterbox.argtypes = [c_void_p, IMAGE]
|
||||
predict_image_letterbox.restype = POINTER(c_float)
|
||||
predict_image_letterbox.argtypes = (ct.c_void_p, IMAGE)
|
||||
predict_image_letterbox.restype = FloatPtr
|
||||
|
||||
network_predict_batch = lib.network_predict_batch
|
||||
network_predict_batch.argtypes = [c_void_p, IMAGE, c_int, c_int, c_int,
|
||||
c_float, c_float, POINTER(c_int), c_int, c_int]
|
||||
network_predict_batch.restype = POINTER(DETNUMPAIR)
|
||||
network_predict_batch.argtypes = (ct.c_void_p, IMAGE, ct.c_int, ct.c_int, ct.c_int,
|
||||
ct.c_float, ct.c_float, IntPtr, ct.c_int, ct.c_int)
|
||||
network_predict_batch.restype = DETNUMPAIRPtr
|
||||
|
||||
|
|
164
darknet_video.py
164
darknet_video.py
|
@ -1,12 +1,11 @@
|
|||
from ctypes import *
|
||||
import random
|
||||
import os
|
||||
import cv2
|
||||
import time
|
||||
import darknet
|
||||
import argparse
|
||||
from threading import Thread, enumerate
|
||||
from queue import Queue
|
||||
import threading
|
||||
import queue
|
||||
|
||||
|
||||
def parser():
|
||||
|
@ -17,9 +16,9 @@ def parser():
|
|||
help="inference video name. Not saved if empty")
|
||||
parser.add_argument("--weights", default="yolov4.weights",
|
||||
help="yolo weights path")
|
||||
parser.add_argument("--dont_show", action='store_true',
|
||||
help="windown inference display. For headless systems")
|
||||
parser.add_argument("--ext_output", action='store_true',
|
||||
parser.add_argument("--dont_show", action="store_true",
|
||||
help="window inference display. For headless systems")
|
||||
parser.add_argument("--ext_output", action="store_true",
|
||||
help="display bbox coordinates of detected objects")
|
||||
parser.add_argument("--config_file", default="./cfg/yolov4.cfg",
|
||||
help="path to config file")
|
||||
|
@ -53,131 +52,162 @@ def check_arguments_errors(args):
|
|||
raise(ValueError("Invalid video path {}".format(os.path.abspath(args.input))))
|
||||
|
||||
|
||||
def set_saved_video(input_video, output_video, size):
|
||||
def set_saved_video(output_video, size, fps):
|
||||
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
|
||||
fps = int(input_video.get(cv2.CAP_PROP_FPS))
|
||||
video = cv2.VideoWriter(output_video, fourcc, fps, size)
|
||||
return video
|
||||
return cv2.VideoWriter(output_video, fourcc, fps, size)
|
||||
|
||||
|
||||
def convert2relative(bbox):
|
||||
def convert2relative(bbox, preproc_h, preproc_w):
|
||||
"""
|
||||
YOLO format use relative coordinates for annotation
|
||||
"""
|
||||
x, y, w, h = bbox
|
||||
_height = darknet_height
|
||||
_width = darknet_width
|
||||
return x/_width, y/_height, w/_width, h/_height
|
||||
x, y, w, h = bbox
|
||||
return x / preproc_w, y / preproc_h, w / preproc_w, h / preproc_h
|
||||
|
||||
|
||||
def convert2original(image, bbox):
|
||||
x, y, w, h = convert2relative(bbox)
|
||||
def convert2original(image, bbox, preproc_h, preproc_w):
|
||||
x, y, w, h = convert2relative(bbox, preproc_h, preproc_w)
|
||||
|
||||
image_h, image_w, __ = image.shape
|
||||
|
||||
orig_x = int(x * image_w)
|
||||
orig_y = int(y * image_h)
|
||||
orig_width = int(w * image_w)
|
||||
orig_height = int(h * image_h)
|
||||
orig_x = int(x * image_w)
|
||||
orig_y = int(y * image_h)
|
||||
orig_width = int(w * image_w)
|
||||
orig_height = int(h * image_h)
|
||||
|
||||
bbox_converted = (orig_x, orig_y, orig_width, orig_height)
|
||||
|
||||
return bbox_converted
|
||||
|
||||
|
||||
def convert4cropping(image, bbox):
|
||||
x, y, w, h = convert2relative(bbox)
|
||||
# @TODO - cfati: Unused
|
||||
def convert4cropping(image, bbox, preproc_h, preproc_w):
|
||||
x, y, w, h = convert2relative(bbox, preproc_h, preproc_w)
|
||||
|
||||
image_h, image_w, __ = image.shape
|
||||
|
||||
orig_left = int((x - w / 2.) * image_w)
|
||||
orig_right = int((x + w / 2.) * image_w)
|
||||
orig_top = int((y - h / 2.) * image_h)
|
||||
orig_bottom = int((y + h / 2.) * image_h)
|
||||
orig_left = int((x - w / 2.) * image_w)
|
||||
orig_right = int((x + w / 2.) * image_w)
|
||||
orig_top = int((y - h / 2.) * image_h)
|
||||
orig_bottom = int((y + h / 2.) * image_h)
|
||||
|
||||
if (orig_left < 0): orig_left = 0
|
||||
if (orig_right > image_w - 1): orig_right = image_w - 1
|
||||
if (orig_top < 0): orig_top = 0
|
||||
if (orig_bottom > image_h - 1): orig_bottom = image_h - 1
|
||||
if orig_left < 0:
|
||||
orig_left = 0
|
||||
if orig_right > image_w - 1:
|
||||
orig_right = image_w - 1
|
||||
if orig_top < 0:
|
||||
orig_top = 0
|
||||
if orig_bottom > image_h - 1:
|
||||
orig_bottom = image_h - 1
|
||||
|
||||
bbox_cropping = (orig_left, orig_top, orig_right, orig_bottom)
|
||||
|
||||
return bbox_cropping
|
||||
|
||||
|
||||
def video_capture(frame_queue, darknet_image_queue):
|
||||
while cap.isOpened():
|
||||
def video_capture(stop_flag, input_path, raw_frame_queue, preprocessed_frame_queue, preproc_h, preproc_w):
|
||||
cap = cv2.VideoCapture(input_path)
|
||||
while cap.isOpened() and not stop_flag.is_set():
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
frame_resized = cv2.resize(frame_rgb, (darknet_width, darknet_height),
|
||||
frame_resized = cv2.resize(frame_rgb, (preproc_w, preproc_h),
|
||||
interpolation=cv2.INTER_LINEAR)
|
||||
frame_queue.put(frame)
|
||||
img_for_detect = darknet.make_image(darknet_width, darknet_height, 3)
|
||||
raw_frame_queue.put(frame)
|
||||
img_for_detect = darknet.make_image(preproc_w, preproc_h, 3)
|
||||
darknet.copy_image_from_bytes(img_for_detect, frame_resized.tobytes())
|
||||
darknet_image_queue.put(img_for_detect)
|
||||
preprocessed_frame_queue.put(img_for_detect)
|
||||
stop_flag.set()
|
||||
cap.release()
|
||||
|
||||
|
||||
def inference(darknet_image_queue, detections_queue, fps_queue):
|
||||
while cap.isOpened():
|
||||
darknet_image = darknet_image_queue.get()
|
||||
def inference(stop_flag, preprocessed_frame_queue, detections_queue, fps_queue,
|
||||
network, class_names, threshold):
|
||||
while not stop_flag.is_set():
|
||||
darknet_image = preprocessed_frame_queue.get()
|
||||
prev_time = time.time()
|
||||
detections = darknet.detect_image(network, class_names, darknet_image, thresh=args.thresh)
|
||||
detections = darknet.detect_image(network, class_names, darknet_image, thresh=threshold)
|
||||
fps = 1 / (time.time() - prev_time)
|
||||
detections_queue.put(detections)
|
||||
fps = int(1/(time.time() - prev_time))
|
||||
fps_queue.put(fps)
|
||||
print("FPS: {}".format(fps))
|
||||
fps_queue.put(int(fps))
|
||||
print("FPS: {:.2f}".format(fps))
|
||||
darknet.print_detections(detections, args.ext_output)
|
||||
darknet.free_image(darknet_image)
|
||||
cap.release()
|
||||
|
||||
|
||||
def drawing(frame_queue, detections_queue, fps_queue):
|
||||
def drawing(stop_flag, input_video_fps, queues, preproc_h, preproc_w, vid_h, vid_w):
|
||||
random.seed(3) # deterministic bbox colors
|
||||
video = set_saved_video(cap, args.out_filename, (video_width, video_height))
|
||||
while cap.isOpened():
|
||||
frame = frame_queue.get()
|
||||
raw_frame_queue, preprocessed_frame_queue, detections_queue, fps_queue = queues
|
||||
video = set_saved_video(args.out_filename, (vid_w, vid_h), input_video_fps)
|
||||
fps = 1
|
||||
while not stop_flag.is_set():
|
||||
frame = raw_frame_queue.get()
|
||||
detections = detections_queue.get()
|
||||
fps = fps_queue.get()
|
||||
detections_adjusted = []
|
||||
if frame is not None:
|
||||
for label, confidence, bbox in detections:
|
||||
bbox_adjusted = convert2original(frame, bbox)
|
||||
bbox_adjusted = convert2original(frame, bbox, preproc_h, preproc_w)
|
||||
detections_adjusted.append((str(label), confidence, bbox_adjusted))
|
||||
image = darknet.draw_boxes(detections_adjusted, frame, class_colors)
|
||||
if not args.dont_show:
|
||||
cv2.imshow('Inference', image)
|
||||
cv2.imshow("Inference", image)
|
||||
if args.out_filename is not None:
|
||||
video.write(image)
|
||||
if cv2.waitKey(fps) == 27:
|
||||
break
|
||||
cap.release()
|
||||
stop_flag.set()
|
||||
video.release()
|
||||
cv2.destroyAllWindows()
|
||||
timeout = 1 / (fps if fps > 0 else 0.5)
|
||||
for q in (preprocessed_frame_queue, detections_queue, fps_queue):
|
||||
try:
|
||||
q.get(block=True, timeout=timeout)
|
||||
except queue.Empty:
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
frame_queue = Queue()
|
||||
darknet_image_queue = Queue(maxsize=1)
|
||||
detections_queue = Queue(maxsize=1)
|
||||
fps_queue = Queue(maxsize=1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parser()
|
||||
check_arguments_errors(args)
|
||||
network, class_names, class_colors = darknet.load_network(
|
||||
args.config_file,
|
||||
args.data_file,
|
||||
args.weights,
|
||||
batch_size=1
|
||||
)
|
||||
args.config_file,
|
||||
args.data_file,
|
||||
args.weights,
|
||||
batch_size=1)
|
||||
darknet_width = darknet.network_width(network)
|
||||
darknet_height = darknet.network_height(network)
|
||||
input_path = str2int(args.input)
|
||||
cap = cv2.VideoCapture(input_path)
|
||||
cap = cv2.VideoCapture(input_path) # Open video twice :(
|
||||
video_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
video_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
Thread(target=video_capture, args=(frame_queue, darknet_image_queue)).start()
|
||||
Thread(target=inference, args=(darknet_image_queue, detections_queue, fps_queue)).start()
|
||||
Thread(target=drawing, args=(frame_queue, detections_queue, fps_queue)).start()
|
||||
video_fps = int(cap.get(cv2.CAP_PROP_FPS))
|
||||
cap.release()
|
||||
del cap
|
||||
|
||||
ExecUnit = threading.Thread
|
||||
Queue = queue.Queue
|
||||
stop_flag = threading.Event()
|
||||
|
||||
raw_frame_queue = Queue()
|
||||
preprocessed_frame_queue = Queue(maxsize=1)
|
||||
detections_queue = Queue(maxsize=1)
|
||||
fps_queue = Queue(maxsize=1)
|
||||
|
||||
exec_units = (
|
||||
ExecUnit(target=video_capture, args=(stop_flag, input_path, raw_frame_queue, preprocessed_frame_queue,
|
||||
darknet_height, darknet_width)),
|
||||
ExecUnit(target=inference, args=(stop_flag, preprocessed_frame_queue, detections_queue, fps_queue,
|
||||
network, class_names, args.thresh)),
|
||||
ExecUnit(target=drawing, args=(stop_flag, video_fps,
|
||||
(raw_frame_queue, preprocessed_frame_queue, detections_queue, fps_queue),
|
||||
darknet_height, darknet_width, video_height, video_width)),
|
||||
)
|
||||
for exec_unit in exec_units:
|
||||
exec_unit.start()
|
||||
for exec_unit in exec_units:
|
||||
exec_unit.join()
|
||||
|
||||
print("\nDone.")
|
||||
|
||||
|
|
Loading…
Reference in New Issue