From c3c6703b8bc5b769ec25fc26a5a1aff43bcb1939 Mon Sep 17 00:00:00 2001 From: Alexey Date: Mon, 2 Apr 2018 14:16:51 +0300 Subject: [PATCH] Update Readme.md --- README.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index e6b576a5..346a4ef4 100644 --- a/README.md +++ b/README.md @@ -314,10 +314,10 @@ It will create `.txt`-file for each `.jpg`-image-file - in the same directory an ### How to train tiny-yolo (to detect your custom objects): Do all the same steps as for the full yolo model as described above. With the exception of: -* Download default weights file for tiny-yolo-voc: http://pjreddie.com/media/files/tiny-yolo-voc.weights -* Get pre-trained weights tiny-yolo-voc.conv.13 using command: `darknet.exe partial cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights tiny-yolo-voc.conv.13 13` -* Make your custom model `tiny-yolo-obj.cfg` based on `tiny-yolo-voc.cfg` instead of `yolo-voc.2.0.cfg` -* Start training: `darknet.exe detector train data/obj.data tiny-yolo-obj.cfg tiny-yolo-voc.conv.13` +* Download default weights file for yolov2-tiny-voc: http://pjreddie.com/media/files/yolov2-tiny-voc.weights +* Get pre-trained weights yolov2-tiny-voc.conv.13 using command: `darknet.exe partial cfg/yolov2-tiny-voc.cfg yolov2-tiny-voc.weights yolov2-tiny-voc.conv.13 13` +* Make your custom model `yolov2-tiny-obj.cfg` based on `cfg/yolov2-tiny-voc.cfg` instead of `yolov3.cfg` +* Start training: `darknet.exe detector train data/obj.data yolov2-tiny-obj.cfg yolov2-tiny-voc.conv.13` For training Yolo based on other models ([DenseNet201-Yolo](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/densenet201_yolo.cfg) or [ResNet50-Yolo](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/resnet50_yolo.cfg)), you can download and get pre-trained weights as showed in this file: https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/partial.cmd If you made you custom model that isn't based on other models, then you can train it without pre-trained weights, then will be used random initial weights.