mirror of https://github.com/AlexeyAB/darknet.git
Show avg-loss chart during Training, if compiled with OpenCV. Use -dont_show to disable.
This commit is contained in:
parent
48586c8d4d
commit
c123f320fc
|
@ -25,11 +25,13 @@
|
|||
#pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib")
|
||||
#endif
|
||||
|
||||
#endif
|
||||
IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_lines, int img_size);
|
||||
void draw_train_loss(IplImage* img, int img_size, float avg_loss, float max_img_loss, int current_batch, int max_batches);
|
||||
#endif // OPENCV
|
||||
|
||||
static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
|
||||
|
||||
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
|
||||
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show)
|
||||
{
|
||||
list *options = read_data_cfg(datacfg);
|
||||
char *train_images = option_find_str(options, "train", "data/train.list");
|
||||
|
@ -94,6 +96,15 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
|
|||
args.saturation = net.saturation;
|
||||
args.hue = net.hue;
|
||||
|
||||
#ifdef OPENCV
|
||||
IplImage* img = NULL;
|
||||
float max_img_loss = 5;
|
||||
int number_of_lines = 100;
|
||||
int img_size = 1000;
|
||||
if (!dont_show)
|
||||
img = draw_train_chart(max_img_loss, net.max_batches, number_of_lines, img_size);
|
||||
#endif //OPENCV
|
||||
|
||||
pthread_t load_thread = load_data(args);
|
||||
clock_t time;
|
||||
int count = 0;
|
||||
|
@ -159,6 +170,12 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
|
|||
|
||||
i = get_current_batch(net);
|
||||
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
||||
|
||||
#ifdef OPENCV
|
||||
if(!dont_show)
|
||||
draw_train_loss(img, img_size, avg_loss, max_img_loss, i, net.max_batches);
|
||||
#endif // OPENCV
|
||||
|
||||
//if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) {
|
||||
if (i % 100 == 0) {
|
||||
#ifdef GPU
|
||||
|
@ -176,6 +193,9 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
|
|||
char buff[256];
|
||||
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
||||
save_weights(net, buff);
|
||||
|
||||
//cvReleaseImage(&img);
|
||||
//cvDestroyAllWindows();
|
||||
}
|
||||
|
||||
|
||||
|
@ -1089,11 +1109,11 @@ void run_detector(int argc, char **argv)
|
|||
if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0;
|
||||
char *filename = (argc > 6) ? argv[6]: 0;
|
||||
if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, dont_show);
|
||||
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
|
||||
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show);
|
||||
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh);
|
||||
else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, final_width, final_heigh, show);
|
||||
else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, final_width, final_heigh, show);
|
||||
else if(0==strcmp(argv[2], "demo")) {
|
||||
list *options = read_data_cfg(datacfg);
|
||||
int classes = option_find_int(options, "classes", 20);
|
||||
|
|
69
src/image.c
69
src/image.c
|
@ -310,7 +310,74 @@ void draw_detections_cv(IplImage* show_img, int num, float thresh, box *boxes, f
|
|||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_lines, int img_size)
|
||||
{
|
||||
int img_offset = 50;
|
||||
int draw_size = img_size - img_offset;
|
||||
IplImage* img = cvCreateImage(cvSize(img_size, img_size), 8, 3);
|
||||
cvSet(img, CV_RGB(255, 255, 255), 0);
|
||||
CvPoint pt1, pt2, pt_text;
|
||||
pt1.x = img_offset; pt2.x = img_size, pt_text.x = 10;
|
||||
CvFont font;
|
||||
cvInitFont(&font, CV_FONT_HERSHEY_COMPLEX_SMALL, 0.7, 0.7, 0, 1, CV_AA);
|
||||
char char_buff[100];
|
||||
int i;
|
||||
for (i = 1; i <= number_of_lines; ++i) {
|
||||
pt1.y = pt2.y = (float)i * draw_size / number_of_lines;
|
||||
cvLine(img, pt1, pt2, CV_RGB(224, 224, 224), 1, 8, 0);
|
||||
if (i % 10 == 0) {
|
||||
sprintf(char_buff, "%2.1f", max_img_loss*(number_of_lines - i) / number_of_lines);
|
||||
pt_text.y = pt1.y + 5;
|
||||
cvPutText(img, char_buff, pt_text, &font, CV_RGB(0, 0, 0));
|
||||
cvLine(img, pt1, pt2, CV_RGB(128, 128, 128), 1, 8, 0);
|
||||
}
|
||||
}
|
||||
pt1.y = draw_size; pt2.y = 0, pt_text.y = draw_size + 15;
|
||||
for (i = 0; i <= number_of_lines; ++i) {
|
||||
pt1.x = pt2.x = img_offset + (float)i * draw_size / number_of_lines;
|
||||
cvLine(img, pt1, pt2, CV_RGB(224, 224, 224), 1, 8, 0);
|
||||
if (i % 10 == 0) {
|
||||
sprintf(char_buff, "%d", max_batches * i / number_of_lines);
|
||||
pt_text.x = pt1.x - 20;
|
||||
cvPutText(img, char_buff, pt_text, &font, CV_RGB(0, 0, 0));
|
||||
cvLine(img, pt1, pt2, CV_RGB(128, 128, 128), 1, 8, 0);
|
||||
}
|
||||
}
|
||||
cvPutText(img, "Iteration number", cvPoint(draw_size / 2, img_size - 10), &font, CV_RGB(0, 0, 0));
|
||||
cvPutText(img, "Press 's' to save: chart.jpg", cvPoint(5, img_size - 10), &font, CV_RGB(0, 0, 0));
|
||||
cvNamedWindow("average loss", CV_WINDOW_NORMAL);
|
||||
cvMoveWindow("average loss", 0, 0);
|
||||
cvResizeWindow("average loss", img_size, img_size);
|
||||
cvShowImage("average loss", img);
|
||||
cvWaitKey(20);
|
||||
return img;
|
||||
}
|
||||
|
||||
void draw_train_loss(IplImage* img, int img_size, float avg_loss, float max_img_loss, int current_batch, int max_batches)
|
||||
{
|
||||
int img_offset = 50;
|
||||
int draw_size = img_size - img_offset;
|
||||
CvFont font;
|
||||
cvInitFont(&font, CV_FONT_HERSHEY_COMPLEX_SMALL, 0.7, 0.7, 0, 1, CV_AA);
|
||||
char char_buff[100];
|
||||
CvPoint pt1, pt2;
|
||||
pt1.x = img_offset + draw_size * (float)current_batch / max_batches;
|
||||
pt1.y = draw_size * (1 - avg_loss / max_img_loss);
|
||||
if (pt1.y < 0) pt1.y = 1;
|
||||
cvCircle(img, pt1, 1, CV_RGB(0, 0, 255), CV_FILLED, 8, 0);
|
||||
|
||||
sprintf(char_buff, "current avg loss = %2.4f", avg_loss);
|
||||
pt1.x = img_size / 2, pt1.y = 30;
|
||||
pt2.x = pt1.x + 250, pt2.y = pt1.y + 20;
|
||||
cvRectangle(img, pt1, pt2, CV_RGB(255, 255, 255), CV_FILLED, 8, 0);
|
||||
pt1.y += 15;
|
||||
cvPutText(img, char_buff, pt1, &font, CV_RGB(0, 0, 0));
|
||||
cvShowImage("average loss", img);
|
||||
int k = cvWaitKey(20);
|
||||
if (k == 's') cvSaveImage("chart.jpg", img, 0);
|
||||
}
|
||||
#endif // OPENCV
|
||||
|
||||
void transpose_image(image im)
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue