mirror of https://github.com/AlexeyAB/darknet.git
use ansi escape sequence vt100 ESC[H ESC[J to clear screen in a portable way (win10+ supported!) (#8834)
This commit is contained in:
parent
538c4353ff
commit
a2f20d7069
|
@ -40,8 +40,7 @@ void demo_art(char *cfgfile, char *weightfile, int cam_index)
|
||||||
|
|
||||||
float *p = network_predict(net, in_s.data);
|
float *p = network_predict(net, in_s.data);
|
||||||
|
|
||||||
printf("\033[2J");
|
printf("\033[H\033[J");
|
||||||
printf("\033[1;1H");
|
|
||||||
|
|
||||||
float score = 0;
|
float score = 0;
|
||||||
for(i = 0; i < n; ++i){
|
for(i = 0; i < n; ++i){
|
||||||
|
|
|
@ -1129,11 +1129,8 @@ void threat_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_i
|
||||||
sprintf(buff, "tmp/threat_%06d", count);
|
sprintf(buff, "tmp/threat_%06d", count);
|
||||||
//save_image(out, buff);
|
//save_image(out, buff);
|
||||||
|
|
||||||
#ifndef _WIN32
|
printf("\033[H\033[J");
|
||||||
printf("\033[2J");
|
printf("\nFPS:%.0f\n", fps);
|
||||||
printf("\033[1;1H");
|
|
||||||
#endif
|
|
||||||
printf("\nFPS:%.0f\n",fps);
|
|
||||||
|
|
||||||
for(i = 0; i < top; ++i){
|
for(i = 0; i < top; ++i){
|
||||||
int index = indexes[i];
|
int index = indexes[i];
|
||||||
|
@ -1208,8 +1205,7 @@ void gun_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_inde
|
||||||
float *predictions = network_predict(net, in_s.data);
|
float *predictions = network_predict(net, in_s.data);
|
||||||
top_predictions(net, top, indexes);
|
top_predictions(net, top, indexes);
|
||||||
|
|
||||||
printf("\033[2J");
|
printf("\033[H\033[J");
|
||||||
printf("\033[1;1H");
|
|
||||||
|
|
||||||
int threat = 0;
|
int threat = 0;
|
||||||
for(i = 0; i < sizeof(bad_cats)/sizeof(bad_cats[0]); ++i){
|
for(i = 0; i < sizeof(bad_cats)/sizeof(bad_cats[0]); ++i){
|
||||||
|
@ -1308,11 +1304,7 @@ void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_ind
|
||||||
if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 1);
|
if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 1);
|
||||||
top_predictions(net, top, indexes);
|
top_predictions(net, top, indexes);
|
||||||
|
|
||||||
#ifndef _WIN32
|
printf("\033[H\033[J");
|
||||||
printf("\033[2J");
|
|
||||||
printf("\033[1;1H");
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
|
||||||
if (!benchmark) {
|
if (!benchmark) {
|
||||||
printf("\rFPS: %.2f (use -benchmark command line flag for correct measurement)\n", fps);
|
printf("\rFPS: %.2f (use -benchmark command line flag for correct measurement)\n", fps);
|
||||||
|
|
|
@ -280,8 +280,7 @@ void demo(char *cfgfile, char *weightfile, float thresh, float hier_thresh, int
|
||||||
|
|
||||||
if (l.embedding_size) set_track_id(local_dets, local_nboxes, demo_thresh, l.sim_thresh, l.track_ciou_norm, l.track_history_size, l.dets_for_track, l.dets_for_show);
|
if (l.embedding_size) set_track_id(local_dets, local_nboxes, demo_thresh, l.sim_thresh, l.track_ciou_norm, l.track_history_size, l.dets_for_track, l.dets_for_show);
|
||||||
|
|
||||||
//printf("\033[2J");
|
printf("\033[H\033[J");
|
||||||
//printf("\033[1;1H");
|
|
||||||
//printf("\nFPS:%.1f\n", fps);
|
//printf("\nFPS:%.1f\n", fps);
|
||||||
printf("Objects:\n\n");
|
printf("Objects:\n\n");
|
||||||
|
|
||||||
|
|
|
@ -314,14 +314,13 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
|
||||||
if (mean_average_precision > 0) printf("\n Last accuracy mAP@%0.2f = %2.2f %%, best = %2.2f %% ", iou_thresh, mean_average_precision * 100, best_map * 100);
|
if (mean_average_precision > 0) printf("\n Last accuracy mAP@%0.2f = %2.2f %%, best = %2.2f %% ", iou_thresh, mean_average_precision * 100, best_map * 100);
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifndef WIN32
|
printf("\033[H\033[J");
|
||||||
if (mean_average_precision > 0.0) {
|
if (mean_average_precision > 0.0) {
|
||||||
printf("\033]2;%d/%d: loss=%0.1f map=%0.2f best=%0.2f hours left=%0.1f\007", iteration, net.max_batches, loss, mean_average_precision, best_map, avg_time);
|
printf("%d/%d: loss=%0.1f map=%0.2f best=%0.2f hours left=%0.1f\007", iteration, net.max_batches, loss, mean_average_precision, best_map, avg_time);
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
printf("\033]2;%d/%d: loss=%0.1f hours left=%0.1f\007", iteration, net.max_batches, loss, avg_time);
|
printf("%d/%d: loss=%0.1f hours left=%0.1f\007", iteration, net.max_batches, loss, avg_time);
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
|
|
||||||
if (net.cudnn_half) {
|
if (net.cudnn_half) {
|
||||||
if (iteration < net.burn_in * 3) fprintf(stderr, "\n Tensor Cores are disabled until the first %d iterations are reached.\n", 3 * net.burn_in);
|
if (iteration < net.burn_in * 3) fprintf(stderr, "\n Tensor Cores are disabled until the first %d iterations are reached.\n", 3 * net.burn_in);
|
||||||
|
|
Loading…
Reference in New Issue