mirror of https://github.com/AlexeyAB/darknet.git
Added contrastive loss
This commit is contained in:
parent
6c6f04a9b3
commit
6f4d7a6d1c
92
src/blas.c
92
src/blas.c
|
@ -515,3 +515,95 @@ void fix_nan_and_inf_cpu(float *input, size_t size)
|
|||
input[i] = 1.0f / i; // pseudo random value
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float cosine_similarity(float *A, float *B, unsigned int feature_size)
|
||||
{
|
||||
float mul = 0.0, d_a = 0.0, d_b = 0.0;
|
||||
|
||||
for (unsigned int i = 0; i < feature_size; ++i)
|
||||
{
|
||||
mul += A[i] * B[i];
|
||||
d_a += A[i] * A[i];
|
||||
d_b += B[i] * B[i];
|
||||
}
|
||||
float similarity;
|
||||
float divider = sqrt(d_a) * sqrt(d_b);
|
||||
if (divider > 0) similarity = mul / divider;
|
||||
else similarity = 0;
|
||||
|
||||
return similarity;
|
||||
}
|
||||
|
||||
// num_of_samples = 2 * loaded_images = mini_batch_size
|
||||
|
||||
float P_constrastive(int i, int l, int num_of_samples, float **z, unsigned int feature_size, float temperature)
|
||||
{
|
||||
if (i == l) {
|
||||
printf(" Error: in P_constrastive must be i != l, while i = %d, l = %d \n", i, l);
|
||||
getchar();
|
||||
}
|
||||
|
||||
const float sim = cosine_similarity(z[i], z[l], feature_size);
|
||||
const float numerator = expf(sim / temperature);
|
||||
|
||||
float denominator = 0;
|
||||
int k;
|
||||
for (k = 0; k < num_of_samples; ++k) {
|
||||
if (k != i) {
|
||||
const float sim_den = cosine_similarity(z[k], z[l], feature_size);
|
||||
denominator += expf(sim_den / temperature);
|
||||
}
|
||||
}
|
||||
|
||||
float result = numerator / denominator;
|
||||
return result;
|
||||
}
|
||||
|
||||
// i - id of the current sample in mini_batch
|
||||
// labels[num_of_samples] - array with class_id for each sample in the current mini_batch
|
||||
// z[feature_size][num_of_samples] - array of arrays with contrastive features (output of conv-layer, f.e. 128 floats for each sample)
|
||||
// delta[feature_size] - array with deltas for backpropagation
|
||||
// temperature - scalar temperature param (temperature > 0), f.e. temperature = 0.07: Supervised Contrastive Learning
|
||||
void grad_contrastive_loss_positive(int i, int *labels, int num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta)
|
||||
{
|
||||
int j;
|
||||
for (j = 0; j < num_of_samples; ++j) {
|
||||
if (i != j && labels[i] == labels[j]) {
|
||||
const double sim = cosine_similarity(z[i], z[j], feature_size);
|
||||
const double P = P_constrastive(i, j, num_of_samples, z, feature_size, temperature);
|
||||
|
||||
int m;
|
||||
for (m = 0; m < feature_size; ++m) {
|
||||
delta[m] += (sim * z[i][m] - z[j][m]) * (1 - P);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// i - id of the current sample in mini_batch
|
||||
// labels[num_of_samples] - array with class_id for each sample in the current mini_batch
|
||||
// z[feature_size][num_of_samples] - array of arrays with contrastive features (output of conv-layer, f.e. 128 floats for each sample)
|
||||
// delta[feature_size] - array with deltas for backpropagation
|
||||
// temperature - scalar temperature param (temperature > 0), f.e. temperature = 0.07: Supervised Contrastive Learning
|
||||
void grad_contrastive_loss_negative(int i, int *labels, int num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta)
|
||||
{
|
||||
int j;
|
||||
for (j = 0; j < num_of_samples; ++j) {
|
||||
if (i != j && labels[i] == labels[j]) {
|
||||
|
||||
int k;
|
||||
for (k = 0; k < num_of_samples; ++k) {
|
||||
if (k != i && k != j) {
|
||||
const double sim = cosine_similarity(z[i], z[k], feature_size);
|
||||
const double P = P_constrastive(i, k, num_of_samples, z, feature_size, temperature);
|
||||
|
||||
int m;
|
||||
for (m = 0; m < feature_size; ++m) {
|
||||
delta[m] += (z[k][m] - sim * z[i][m]) * P;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
|
@ -154,6 +154,11 @@ void rotate_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, i
|
|||
void reduce_and_expand_array_gpu(const float *src_gpu, float *dst_gpu, int size, int groups);
|
||||
void expand_array_gpu(const float *src_gpu, float *dst_gpu, int size, int groups);
|
||||
|
||||
float cosine_similarity(float *A, float *B, unsigned int feature_size);
|
||||
float P_constrastive(int i, int l, int num_of_samples, float **z, unsigned int feature_size, float temperature);
|
||||
void grad_contrastive_loss_positive(int i, int *labels, int num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta);
|
||||
void grad_contrastive_loss_negative(int i, int *labels, int num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta);
|
||||
|
||||
#endif
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue