Fixed new_coords=1 scale_x_y = 2.0 for yolov4x-mish.cfg and yolov4-csp.cfg

This commit is contained in:
AlexeyAB 2020-12-01 17:28:28 +03:00
parent eb208de417
commit 6d5addd176
5 changed files with 20 additions and 8 deletions

View File

@ -26,7 +26,7 @@ mosaic=1
letter_box=1
optimized_memory=1
#optimized_memory=1
#23:104x104 54:52x52 85:26x26 104:13x13 for 416
@ -1032,6 +1032,7 @@ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 4
classes=80
num=9
jitter=.1
scale_x_y = 2.0
objectness_smooth=0
ignore_thresh = .7
truth_thresh = 1
@ -1145,6 +1146,7 @@ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 4
classes=80
num=9
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
@ -1258,6 +1260,7 @@ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 4
classes=80
num=9
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1

View File

@ -26,7 +26,7 @@ mosaic=1
letter_box=1
optimized_memory=1
#optimized_memory=1
[convolutional]
batch_normalize=1
@ -1159,6 +1159,7 @@ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 4
classes=80
num=9
jitter=.1
scale_x_y = 2.0
objectness_smooth=0
ignore_thresh = .7
truth_thresh = 1
@ -1288,6 +1289,7 @@ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 4
classes=80
num=9
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
@ -1417,6 +1419,7 @@ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 4
classes=80
num=9
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1

View File

@ -26,7 +26,7 @@ mosaic=1
letter_box=1
optimized_memory=1
#optimized_memory=1
#23:104x104 54:52x52 85:26x26 104:13x13 for 416
@ -1032,6 +1032,7 @@ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 4
classes=80
num=9
jitter=.1
scale_x_y = 2.0
objectness_smooth=0
ignore_thresh = .7
truth_thresh = 1
@ -1145,6 +1146,7 @@ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 4
classes=80
num=9
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
@ -1258,6 +1260,7 @@ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 4
classes=80
num=9
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1

View File

@ -26,7 +26,7 @@ mosaic=1
letter_box=1
optimized_memory=1
#optimized_memory=1
[convolutional]
batch_normalize=1
@ -1159,6 +1159,7 @@ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 4
classes=80
num=9
jitter=.1
scale_x_y = 2.0
objectness_smooth=0
ignore_thresh = .7
truth_thresh = 1
@ -1288,6 +1289,7 @@ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 4
classes=80
num=9
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
@ -1417,6 +1419,7 @@ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 4
classes=80
num=9
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1

View File

@ -138,8 +138,8 @@ box get_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw
// w = ln(t.w * net.w / anchors_w); // w - output of previous conv-layer
// h = ln(t.h * net.h / anchors_h); // h - output of previous conv-layer
if (new_coords) {
b.x = (i + x[index + 0 * stride] * 2 - 0.5) / lw;
b.y = (j + x[index + 1 * stride] * 2 - 0.5) / lh;
b.x = (i + x[index + 0 * stride]) / lw;
b.y = (j + x[index + 1 * stride]) / lh;
b.w = x[index + 2 * stride] * x[index + 2 * stride] * 4 * biases[2 * n] / w;
b.h = x[index + 3 * stride] * x[index + 3 * stride] * 4 * biases[2 * n + 1] / h;
}
@ -197,8 +197,8 @@ ious delta_yolo_box(box truth, float *x, float *biases, int n, int index, int i,
float th = log(truth.h*h / biases[2 * n + 1]);
if (new_coords) {
tx = (truth.x*lw - i + 0.5) / 2;
ty = (truth.y*lh - j + 0.5) / 2;
//tx = (truth.x*lw - i + 0.5) / 2;
//ty = (truth.y*lh - j + 0.5) / 2;
tw = sqrt(truth.w*w / (4 * biases[2 * n]));
th = sqrt(truth.h*h / (4 * biases[2 * n + 1]));
}