mirror of https://github.com/AlexeyAB/darknet.git
Update Readme.md
This commit is contained in:
parent
617cf313cc
commit
6896e7e5b1
24
README.md
24
README.md
|
@ -10,7 +10,8 @@
|
|||
6. [When should I stop training](#when-should-i-stop-training)
|
||||
7. [How to improve object detection](#how-to-improve-object-detection)
|
||||
8. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
|
||||
9. [How to use Yolo as DLL](#how-to-use-yolo-as-dll)
|
||||
9. [Using Yolo9000](#using_yolo9000)
|
||||
10. [How to use Yolo as DLL](#how-to-use-yolo-as-dll)
|
||||
|
||||
| ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) | ![map_fps](https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg) https://arxiv.org/abs/1612.08242 |
|
||||
|---|---|
|
||||
|
@ -354,6 +355,27 @@ Here you can find repository with GUI-software for marking bounded boxes of obje
|
|||
|
||||
With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`.txt`, `bird`1-4`.txt` for 2 classes of objects (air, bird) and `train_obj.cmd` with example how to train this image-set with Yolo v2
|
||||
|
||||
## Using Yolo9000
|
||||
|
||||
Simultaneous detection and classification of 9000 objects:
|
||||
|
||||
* `9k.tree` - **WordTree** of 9418 categories - `<label> <parent_it>`, if `parent_id == -1` then this label hasn't parent: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.tree
|
||||
|
||||
* `coco9k.map` - map 80 categories from MSCOCO to WordTree `9k.tree`: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/coco9k.map
|
||||
|
||||
* `combine9k.data` - data file, there are paths to: 9k.labels, 9k.names, inet9k.map, (change path to your `combine9k.train.list`): https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/combine9k.data
|
||||
|
||||
* `9k.labels` - 9418 labels of objects: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.labels
|
||||
|
||||
* `9k.names` -
|
||||
9418 names of objects: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.names
|
||||
|
||||
* `inet9k.map` - map 200 categories from ImageNet to WordTree `9k.tree`: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/inet9k.map
|
||||
|
||||
* `yolo9000.cfg` - cfg-file of the Yolo9000, also there are paths to the `9k.tree` and `coco9k.map` https://github.com/AlexeyAB/darknet/blob/617cf313ccb1fe005db3f7d88dec04a04bd97cc2/cfg/yolo9000.cfg#L217-L218
|
||||
|
||||
* `yolo9000.weights` - (186 MB Yolo9000-model) requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
|
||||
|
||||
## How to use Yolo as DLL
|
||||
|
||||
1. To compile Yolo as C++ DLL-file `yolo_cpp_dll.dll` - open in MSVS2015 file `build\darknet\yolo_cpp_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_cpp_dll
|
||||
|
|
Loading…
Reference in New Issue