mirror of https://github.com/AlexeyAB/darknet.git
Another fix for [batchnorm] layer
This commit is contained in:
parent
d6eaa2e95f
commit
5f6dced3ce
|
@ -2,12 +2,13 @@
|
|||
#include "blas.h"
|
||||
#include <stdio.h>
|
||||
|
||||
layer make_batchnorm_layer(int batch, int w, int h, int c)
|
||||
layer make_batchnorm_layer(int batch, int w, int h, int c, int train)
|
||||
{
|
||||
fprintf(stderr, "Batch Normalization Layer: %d x %d x %d image\n", w,h,c);
|
||||
layer layer = { (LAYER_TYPE)0 };
|
||||
layer.type = BATCHNORM;
|
||||
layer.batch = batch;
|
||||
layer.train = train;
|
||||
layer.h = layer.out_h = h;
|
||||
layer.w = layer.out_w = w;
|
||||
layer.c = layer.out_c = c;
|
||||
|
@ -42,13 +43,19 @@ layer make_batchnorm_layer(int batch, int w, int h, int c)
|
|||
layer.update_gpu = update_batchnorm_layer_gpu;
|
||||
|
||||
layer.output_gpu = cuda_make_array(layer.output, h * w * c * batch);
|
||||
layer.delta_gpu = cuda_make_array(layer.delta, h * w * c * batch);
|
||||
|
||||
layer.biases_gpu = cuda_make_array(layer.biases, c);
|
||||
layer.bias_updates_gpu = cuda_make_array(layer.bias_updates, c);
|
||||
|
||||
layer.scales_gpu = cuda_make_array(layer.scales, c);
|
||||
layer.scale_updates_gpu = cuda_make_array(layer.scale_updates, c);
|
||||
|
||||
if (train) {
|
||||
layer.delta_gpu = cuda_make_array(layer.delta, h * w * c * batch);
|
||||
|
||||
layer.bias_updates_gpu = cuda_make_array(layer.bias_updates, c);
|
||||
layer.scale_updates_gpu = cuda_make_array(layer.scale_updates, c);
|
||||
|
||||
layer.mean_delta_gpu = cuda_make_array(layer.mean, c);
|
||||
layer.variance_delta_gpu = cuda_make_array(layer.variance, c);
|
||||
}
|
||||
|
||||
layer.mean_gpu = cuda_make_array(layer.mean, c);
|
||||
layer.variance_gpu = cuda_make_array(layer.variance, c);
|
||||
|
@ -56,16 +63,18 @@ layer make_batchnorm_layer(int batch, int w, int h, int c)
|
|||
layer.rolling_mean_gpu = cuda_make_array(layer.mean, c);
|
||||
layer.rolling_variance_gpu = cuda_make_array(layer.variance, c);
|
||||
|
||||
layer.mean_delta_gpu = cuda_make_array(layer.mean, c);
|
||||
layer.variance_delta_gpu = cuda_make_array(layer.variance, c);
|
||||
if (train) {
|
||||
layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
|
||||
#ifndef CUDNN
|
||||
layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
|
||||
#endif // not CUDNN
|
||||
}
|
||||
|
||||
layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
|
||||
layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
|
||||
#ifdef CUDNN
|
||||
cudnnCreateTensorDescriptor(&layer.normTensorDesc);
|
||||
cudnnCreateTensorDescriptor(&layer.normDstTensorDesc);
|
||||
cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
|
||||
cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1);
|
||||
CHECK_CUDNN(cudnnCreateTensorDescriptor(&layer.normTensorDesc));
|
||||
CHECK_CUDNN(cudnnCreateTensorDescriptor(&layer.normDstTensorDesc));
|
||||
CHECK_CUDNN(cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w));
|
||||
CHECK_CUDNN(cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1));
|
||||
#endif
|
||||
#endif
|
||||
return layer;
|
||||
|
@ -129,9 +138,40 @@ void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_del
|
|||
}
|
||||
}
|
||||
|
||||
void resize_batchnorm_layer(layer *layer, int w, int h)
|
||||
void resize_batchnorm_layer(layer *l, int w, int h)
|
||||
{
|
||||
fprintf(stderr, "Not implemented\n");
|
||||
l->out_h = l->h = h;
|
||||
l->out_w = l->w = w;
|
||||
l->outputs = l->inputs = h*w*l->c;
|
||||
|
||||
const int output_size = l->outputs * l->batch;
|
||||
|
||||
l->output = (float*)realloc(l->output, output_size * sizeof(float));
|
||||
l->delta = (float*)realloc(l->delta, output_size * sizeof(float));
|
||||
|
||||
#ifdef GPU
|
||||
cuda_free(l->output_gpu);
|
||||
l->output_gpu = cuda_make_array(l->output, output_size);
|
||||
|
||||
if (l->train) {
|
||||
cuda_free(l->delta_gpu);
|
||||
l->delta_gpu = cuda_make_array(l->delta, output_size);
|
||||
|
||||
cuda_free(l->x_gpu);
|
||||
l->x_gpu = cuda_make_array(l->output, output_size);
|
||||
#ifndef CUDNN
|
||||
cuda_free(l->x_norm_gpu);
|
||||
l->x_norm_gpu = cuda_make_array(l->output, output_size);
|
||||
#endif // not CUDNN
|
||||
}
|
||||
|
||||
|
||||
#ifdef CUDNN
|
||||
CHECK_CUDNN(cudnnDestroyTensorDescriptor(l->normDstTensorDesc));
|
||||
CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normDstTensorDesc));
|
||||
CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w));
|
||||
#endif // CUDNN
|
||||
#endif // GPU
|
||||
}
|
||||
|
||||
void forward_batchnorm_layer(layer l, network_state state)
|
||||
|
@ -157,6 +197,7 @@ void forward_batchnorm_layer(layer l, network_state state)
|
|||
normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w);
|
||||
}
|
||||
scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
|
||||
add_bias(l.output, l.biases, l.batch, l.out_c, l.out_w*l.out_h);
|
||||
}
|
||||
|
||||
void backward_batchnorm_layer(const layer l, network_state state)
|
||||
|
@ -188,12 +229,14 @@ void update_batchnorm_layer(layer l, int batch, float learning_rate, float momen
|
|||
|
||||
void pull_batchnorm_layer(layer l)
|
||||
{
|
||||
cuda_pull_array(l.biases_gpu, l.biases, l.c);
|
||||
cuda_pull_array(l.scales_gpu, l.scales, l.c);
|
||||
cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
|
||||
cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
|
||||
}
|
||||
void push_batchnorm_layer(layer l)
|
||||
{
|
||||
cuda_push_array(l.biases_gpu, l.biases, l.c);
|
||||
cuda_push_array(l.scales_gpu, l.scales, l.c);
|
||||
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
|
||||
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
|
||||
|
|
|
@ -8,11 +8,13 @@
|
|||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
layer make_batchnorm_layer(int batch, int w, int h, int c);
|
||||
layer make_batchnorm_layer(int batch, int w, int h, int c, int train);
|
||||
void forward_batchnorm_layer(layer l, network_state state);
|
||||
void backward_batchnorm_layer(layer l, network_state state);
|
||||
void update_batchnorm_layer(layer l, int batch, float learning_rate, float momentum, float decay);
|
||||
|
||||
void resize_batchnorm_layer(layer *l, int w, int h);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_batchnorm_layer_gpu(layer l, network_state state);
|
||||
void backward_batchnorm_layer_gpu(layer l, network_state state);
|
||||
|
|
|
@ -37,6 +37,7 @@ void mean_cpu(float *x, int batch, int filters, int spatial, float *mean);
|
|||
void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
|
||||
void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial);
|
||||
|
||||
void add_bias(float *output, float *biases, int batch, int n, int size);
|
||||
void scale_bias(float *output, float *scales, int batch, int n, int size);
|
||||
void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates);
|
||||
void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta);
|
||||
|
|
|
@ -527,6 +527,8 @@ int resize_network(network *net, int w, int h)
|
|||
resize_maxpool_layer(&l, w, h);
|
||||
}else if (l.type == LOCAL_AVGPOOL) {
|
||||
resize_maxpool_layer(&l, w, h);
|
||||
}else if (l.type == BATCHNORM) {
|
||||
resize_batchnorm_layer(&l, w, h);
|
||||
}else if(l.type == REGION){
|
||||
resize_region_layer(&l, w, h);
|
||||
}else if (l.type == YOLO) {
|
||||
|
@ -1079,7 +1081,6 @@ void fuse_conv_batchnorm(network net)
|
|||
int f;
|
||||
for (f = 0; f < l->n; ++f)
|
||||
{
|
||||
//l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
|
||||
l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f] + .000001));
|
||||
|
||||
const size_t filter_size = l->size*l->size*l->c / l->groups;
|
||||
|
@ -1087,7 +1088,6 @@ void fuse_conv_batchnorm(network net)
|
|||
for (i = 0; i < filter_size; ++i) {
|
||||
int w_index = f*filter_size + i;
|
||||
|
||||
//l->weights[w_index] = (double)l->weights[w_index] * l->scales[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
|
||||
l->weights[w_index] = (double)l->weights[w_index] * l->scales[f] / (sqrt((double)l->rolling_variance[f] + .000001));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -805,7 +805,7 @@ layer parse_normalization(list *options, size_params params)
|
|||
|
||||
layer parse_batchnorm(list *options, size_params params)
|
||||
{
|
||||
layer l = make_batchnorm_layer(params.batch, params.w, params.h, params.c);
|
||||
layer l = make_batchnorm_layer(params.batch, params.w, params.h, params.c, params.train);
|
||||
return l;
|
||||
}
|
||||
|
||||
|
@ -1507,6 +1507,7 @@ void save_batchnorm_weights(layer l, FILE *fp)
|
|||
pull_batchnorm_layer(l);
|
||||
}
|
||||
#endif
|
||||
fwrite(l.biases, sizeof(float), l.c, fp);
|
||||
fwrite(l.scales, sizeof(float), l.c, fp);
|
||||
fwrite(l.rolling_mean, sizeof(float), l.c, fp);
|
||||
fwrite(l.rolling_variance, sizeof(float), l.c, fp);
|
||||
|
@ -1652,6 +1653,7 @@ void load_connected_weights(layer l, FILE *fp, int transpose)
|
|||
|
||||
void load_batchnorm_weights(layer l, FILE *fp)
|
||||
{
|
||||
fread(l.biases, sizeof(float), l.c, fp);
|
||||
fread(l.scales, sizeof(float), l.c, fp);
|
||||
fread(l.rolling_mean, sizeof(float), l.c, fp);
|
||||
fread(l.rolling_variance, sizeof(float), l.c, fp);
|
||||
|
|
Loading…
Reference in New Issue