mirror of https://github.com/AlexeyAB/darknet.git
Merge pull request #3375 from acxz/build_instructions
Build instructions
This commit is contained in:
commit
5dfbbfdb5f
58
README.md
58
README.md
|
@ -19,8 +19,11 @@ More details: http://pjreddie.com/darknet/yolo/
|
|||
|
||||
0. [Improvements in this repository](#improvements-in-this-repository)
|
||||
1. [How to use](#how-to-use-on-the-command-line)
|
||||
2. [How to compile on Linux](#how-to-compile-on-linux)
|
||||
2. How to compile on Linux
|
||||
* [Using cmake](#how-to-compile-on-linux-using-cmake)
|
||||
* [Using make](#how-to-compile-on-linux-using-make)
|
||||
3. How to compile on Windows
|
||||
* [Using CMake-GUI](#how-to-compile-on-windows-using-cmake-gui)
|
||||
* [Using vcpkg](#how-to-compile-on-windows-using-vcpkg)
|
||||
* [Legacy way](#how-to-compile-on-windows-legacy-way)
|
||||
4. [How to train (Pascal VOC Data)](#how-to-train-pascal-voc-data)
|
||||
|
@ -51,10 +54,6 @@ More details: http://pjreddie.com/darknet/yolo/
|
|||
* **GPU with CC >= 3.0**: https://en.wikipedia.org/wiki/CUDA#GPUs_supported
|
||||
* on Linux **GCC or Clang**, on Windows **MSVC 2015/2017/2019** https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community
|
||||
|
||||
Compiling on **Windows** by using `Cmake-GUI` as on this [**IMAGE**](https://user-images.githubusercontent.com/4096485/55107892-6becf380-50e3-11e9-9a0a-556a943c429a.png): Configure -> Optional platform for generator (Set: x64) -> Finish -> Generate -> Open Project -> x64 & Release -> Build -> Build solution
|
||||
|
||||
Compiling on **Linux** by using command `make` (or alternative way by using command: `cmake . && make` )
|
||||
|
||||
#### Pre-trained models
|
||||
|
||||
There are weights-file for different cfg-files (smaller size -> faster speed & lower accuracy:
|
||||
|
@ -171,7 +170,23 @@ On Linux find executable file `./darknet` in the root directory, while on Window
|
|||
|
||||
* Yolo v3 COCO-model: `darknet.exe detector demo data/coco.data yolov3.cfg yolov3.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
|
||||
|
||||
### How to compile on Linux
|
||||
### How to compile on Linux (using `cmake`)
|
||||
|
||||
The `CMakeLists.txt` will attempt to find installed optional dependencies like
|
||||
CUDA, cudnn, ZED and build against those. It will also create a shared object
|
||||
library file to use `darknet` for code development.
|
||||
|
||||
Do inside the cloned repository:
|
||||
|
||||
```
|
||||
mkdir build-release
|
||||
cd build-release
|
||||
cmake ..
|
||||
make
|
||||
make install
|
||||
```
|
||||
|
||||
### How to compile on Linux (using `make`)
|
||||
|
||||
Just do `make` in the darknet directory.
|
||||
Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1)
|
||||
|
@ -189,9 +204,28 @@ Before make, you can set such options in the `Makefile`: [link](https://github.c
|
|||
|
||||
To run Darknet on Linux use examples from this article, just use `./darknet` instead of `darknet.exe`, i.e. use this command: `./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights`
|
||||
|
||||
### How to compile on Windows (using `CMake-GUI`)
|
||||
|
||||
This is the recommended approach to build Darknet on Windows if you have already
|
||||
installed Visual Studio 2015/2017/2019, CUDA > 10.0, cuDNN > 7.0, and
|
||||
OpenCV > 2.4.
|
||||
|
||||
Use `CMake-GUI` as shown here on this [**IMAGE**](https://user-images.githubusercontent.com/4096485/55107892-6becf380-50e3-11e9-9a0a-556a943c429a.png):
|
||||
|
||||
1. Configure
|
||||
2. Optional platform for generator (Set: x64)
|
||||
3. Finish
|
||||
4. Generate
|
||||
5. Open Project
|
||||
6. Set: x64 & Release
|
||||
7. Build
|
||||
8. Build solution
|
||||
|
||||
### How to compile on Windows (using `vcpkg`)
|
||||
|
||||
If you have already installed Visual Studio 2015/2017/2019, CUDA > 10.0, cuDNN > 7.0, OpenCV > 2.4, then compile Darknet by using `C:\Program Files\CMake\bin\cmake-gui.exe` as on this [**IMAGE**](https://user-images.githubusercontent.com/4096485/55107892-6becf380-50e3-11e9-9a0a-556a943c429a.png): Configure -> Optional platform for generator (Set: x64) -> Finish -> Generate -> Open Project -> x64 & Release -> Build -> Build solution
|
||||
If you have already installed Visual Studio 2015/2017/2019, CUDA > 10.0,
|
||||
cuDNN > 7.0, OpenCV > 2.4, then to compile Darknet it is recommended to use
|
||||
[CMake-GUI](#how-to-compile-on-windows-using-cmake-gui).
|
||||
|
||||
Otherwise, follow these steps:
|
||||
|
||||
|
@ -615,8 +649,14 @@ With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`
|
|||
|
||||
## How to use Yolo as DLL and SO libraries
|
||||
|
||||
* on Linux - set `LIBSO=1` in the `Makefile` and do `make`
|
||||
* on Windows - compile `build\darknet\yolo_cpp_dll.sln` or `build\darknet\yolo_cpp_dll_no_gpu.sln` solution
|
||||
* on Linux
|
||||
* using `build.sh` or
|
||||
* build `darknet` using `cmake` or
|
||||
* set `LIBSO=1` in the `Makefile` and do `make`
|
||||
* on Windows
|
||||
* using `build.ps1` or
|
||||
* build `darknet` using `cmake` or
|
||||
* compile `build\darknet\yolo_cpp_dll.sln` solution or `build\darknet\yolo_cpp_dll_no_gpu.sln` solution
|
||||
|
||||
There are 2 APIs:
|
||||
* C API: https://github.com/AlexeyAB/darknet/blob/master/include/darknet.h
|
||||
|
|
Loading…
Reference in New Issue