Fix python video (#7611)

* some bbox conversion functions

* output video in original resolution

* fixing drawing of bboxes into orig sized video
This commit is contained in:
Martin 2021-04-26 00:01:33 +02:00 committed by GitHub
parent 3a0dc55cad
commit 5c927228de
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 60 additions and 11 deletions

View File

@ -60,16 +60,61 @@ def set_saved_video(input_video, output_video, size):
return video return video
def convert2relative(bbox):
"""
YOLO format use relative coordinates for annotation
"""
x, y, w, h = bbox
_height = darknet_height
_width = darknet_width
return x/_width, y/_height, w/_width, h/_height
def convert2original(image, bbox):
x, y, w, h = convert2relative(bbox)
image_h, image_w, __ = image.shape
orig_x = int(x * image_w)
orig_y = int(y * image_h)
orig_width = int(w * image_w)
orig_height = int(h * image_h)
bbox_converted = (orig_x, orig_y, orig_width, orig_height)
return bbox_converted
def convert4cropping(image, bbox):
x, y, w, h = convert2relative(bbox)
image_h, image_w, __ = image.shape
orig_left = int((x - w / 2.) * image_w)
orig_right = int((x + w / 2.) * image_w)
orig_top = int((y - h / 2.) * image_h)
orig_bottom = int((y + h / 2.) * image_h)
if (orig_left < 0): orig_left = 0
if (orig_right > image_w - 1): orig_right = image_w - 1
if (orig_top < 0): orig_top = 0
if (orig_bottom > image_h - 1): orig_bottom = image_h - 1
bbox_cropping = (orig_left, orig_top, orig_right, orig_bottom)
return bbox_cropping
def video_capture(frame_queue, darknet_image_queue): def video_capture(frame_queue, darknet_image_queue):
while cap.isOpened(): while cap.isOpened():
ret, frame = cap.read() ret, frame = cap.read()
if not ret: if not ret:
break break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb, (width, height), frame_resized = cv2.resize(frame_rgb, (darknet_width, darknet_height),
interpolation=cv2.INTER_LINEAR) interpolation=cv2.INTER_LINEAR)
frame_queue.put(frame_resized) frame_queue.put(frame)
img_for_detect = darknet.make_image(width, height, 3) img_for_detect = darknet.make_image(darknet_width, darknet_height, 3)
darknet.copy_image_from_bytes(img_for_detect, frame_resized.tobytes()) darknet.copy_image_from_bytes(img_for_detect, frame_resized.tobytes())
darknet_image_queue.put(img_for_detect) darknet_image_queue.put(img_for_detect)
cap.release() cap.release()
@ -91,18 +136,22 @@ def inference(darknet_image_queue, detections_queue, fps_queue):
def drawing(frame_queue, detections_queue, fps_queue): def drawing(frame_queue, detections_queue, fps_queue):
random.seed(3) # deterministic bbox colors random.seed(3) # deterministic bbox colors
video = set_saved_video(cap, args.out_filename, (width, height)) video = set_saved_video(cap, args.out_filename, (darknet_width, darknet_height))
while cap.isOpened(): while cap.isOpened():
frame_resized = frame_queue.get() frame = frame_queue.get()
detections = detections_queue.get() detections = detections_queue.get()
fps = fps_queue.get() fps = fps_queue.get()
if frame_resized is not None: detections_adjusted = []
image = darknet.draw_boxes(detections, frame_resized, class_colors) if frame is not None:
for label, confidence, bbox in detections:
bbox_adjusted = convert2original(frame, bbox)
detections_adjusted.append((str(label), confidence, bbox_adjusted))
image = darknet.draw_boxes(detections_adjusted, frame, class_colors)
if not args.dont_show:
cv2.imshow('Inference', image)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if args.out_filename is not None: if args.out_filename is not None:
video.write(image) video.write(image)
if not args.dont_show:
cv2.imshow('Inference', image)
if cv2.waitKey(fps) == 27: if cv2.waitKey(fps) == 27:
break break
cap.release() cap.release()
@ -124,8 +173,8 @@ if __name__ == '__main__':
args.weights, args.weights,
batch_size=1 batch_size=1
) )
width = darknet.network_width(network) darknet_width = darknet.network_width(network)
height = darknet.network_height(network) darknet_height = darknet.network_height(network)
input_path = str2int(args.input) input_path = str2int(args.input)
cap = cv2.VideoCapture(input_path) cap = cv2.VideoCapture(input_path)
Thread(target=video_capture, args=(frame_queue, darknet_image_queue)).start() Thread(target=video_capture, args=(frame_queue, darknet_image_queue)).start()