mirror of https://github.com/AlexeyAB/darknet.git
Update Readme.md - training for custom objects
This commit is contained in:
parent
ed023897e0
commit
45e03601d1
59
README.md
59
README.md
|
@ -137,3 +137,62 @@ More information about training by the link: http://pjreddie.com/darknet/yolo/#t
|
|||
2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.cfg yolo-voc_1000.weights -gpus 0,1,2,3`
|
||||
|
||||
https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
|
||||
|
||||
## How to train (to detect your custom objects):
|
||||
|
||||
1. Create file `yolo-obj.cfg` with the same content as in `yolo-voc.cfg` (or copy `yolo-voc.cfg` to `yolo-obj.cfg)` and:
|
||||
|
||||
* change line `classes=20` to your number of objects
|
||||
* change line `filters=425` to `filters=(classes + 5)*5` (generally this depends on the `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`)
|
||||
|
||||
For example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.cfg` in such lines:
|
||||
|
||||
```
|
||||
[convolutional]
|
||||
filters=35
|
||||
|
||||
[region]
|
||||
classes=2
|
||||
```
|
||||
|
||||
2. Create file `obj.names` in the directory `build\darknet\x64\data\`, with objects names - each in new line
|
||||
|
||||
3. Create file `obj.data` in the directory `build\darknet\x64\data\`, containing (where **classes = number of objects**):
|
||||
|
||||
```
|
||||
classes= 2
|
||||
train = train.txt
|
||||
valid = test.txt
|
||||
names = obj.names
|
||||
backup = backup/
|
||||
```
|
||||
|
||||
4. Put image-files (.jpg) of your objects in the directory `build\darknet\x64\data\obj\`
|
||||
|
||||
5. Create `.txt`-file for each `.jpg`-image-file - with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>`
|
||||
|
||||
Where:
|
||||
* `<object-class>` - integer number of object from `0` to `(classes-1)`
|
||||
* `<x> <y> <width> <height>` - float values relative to width and height of image, it can be equal from 0.0 to 1.0
|
||||
* atention: `<x> <y>` - are center of rectangle (are not top-left corner)
|
||||
|
||||
For example for `img1.jpg` you should create `img1.txt` containing:
|
||||
|
||||
```
|
||||
1 0.716797 0.395833 0.216406 0.147222
|
||||
0 0.687109 0.379167 0.255469 0.158333
|
||||
1 0.420312 0.395833 0.140625 0.166667
|
||||
```
|
||||
|
||||
6. Create file `train.txt` in directory `build\darknet\x64\data\`, with filenames of your images, each filename in new line, with path relative to `darknet.exe`, for example containing:
|
||||
|
||||
```
|
||||
data/obj/img1.jpg
|
||||
data/obj/img2.jpg
|
||||
data/obj/img3.jpg
|
||||
```
|
||||
|
||||
7. Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23 and put to the directory `build\darknet\x64`
|
||||
|
||||
8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23`
|
||||
|
||||
|
|
Loading…
Reference in New Issue