mirror of https://github.com/AlexeyAB/darknet.git
Single image feature extraction for VOC
This commit is contained in:
parent
43424a343a
commit
2c6d4ba1d5
65
src/tests.c
65
src/tests.c
|
@ -497,10 +497,68 @@ void features_VOC(int part, int total)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void features_VOC_image(char *image_file, char *image_dir, char *out_dir)
|
||||||
|
{
|
||||||
|
int i,j;
|
||||||
|
network net = parse_network_cfg("cfg/voc_features.cfg");
|
||||||
|
char image_path[1024];
|
||||||
|
sprintf(image_path, "%s%s",image_dir, image_file);
|
||||||
|
char out_path[1024];
|
||||||
|
sprintf(out_path, "%s%s.txt",out_dir, image_file);
|
||||||
|
printf("%s\n", image_file);
|
||||||
|
FILE *fp = fopen(out_path, "w");
|
||||||
|
if(fp == 0) file_error(out_path);
|
||||||
|
|
||||||
|
IplImage* src = 0;
|
||||||
|
if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
|
||||||
|
int w = src->width;
|
||||||
|
int h = src->height;
|
||||||
|
int sbin = 8;
|
||||||
|
int interval = 10;
|
||||||
|
double scale = pow(2., 1./interval);
|
||||||
|
int m = (w<h)?w:h;
|
||||||
|
int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
|
||||||
|
image *ims = calloc(max_scale+interval, sizeof(image));
|
||||||
|
|
||||||
|
for(i = 0; i < interval; ++i){
|
||||||
|
double factor = 1./pow(scale, i);
|
||||||
|
double ih = round(h*factor);
|
||||||
|
double iw = round(w*factor);
|
||||||
|
int ex_h = round(ih/4.) - 2;
|
||||||
|
int ex_w = round(iw/4.) - 2;
|
||||||
|
ims[i] = features_output_size(net, src, ex_h, ex_w);
|
||||||
|
|
||||||
|
ih = round(h*factor);
|
||||||
|
iw = round(w*factor);
|
||||||
|
ex_h = round(ih/8.) - 2;
|
||||||
|
ex_w = round(iw/8.) - 2;
|
||||||
|
ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
|
||||||
|
for(j = i+interval; j < max_scale; j += interval){
|
||||||
|
factor /= 2.;
|
||||||
|
ih = round(h*factor);
|
||||||
|
iw = round(w*factor);
|
||||||
|
ex_h = round(ih/8.) - 2;
|
||||||
|
ex_w = round(iw/8.) - 2;
|
||||||
|
ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for(i = 0; i < max_scale+interval; ++i){
|
||||||
|
image out = ims[i];
|
||||||
|
fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
|
||||||
|
for(j = 0; j < out.c*out.h*out.w; ++j){
|
||||||
|
if(j != 0)fprintf(fp, ",");
|
||||||
|
fprintf(fp, "%g", out.data[j]);
|
||||||
|
}
|
||||||
|
fprintf(fp, "\n");
|
||||||
|
free_image(out);
|
||||||
|
}
|
||||||
|
free(ims);
|
||||||
|
fclose(fp);
|
||||||
|
cvReleaseImage(&src);
|
||||||
|
}
|
||||||
|
|
||||||
int main(int argc, char *argv[])
|
int main(int argc, char *argv[])
|
||||||
{
|
{
|
||||||
int part = atoi(argv[1]);
|
|
||||||
int total = atoi(argv[2]);
|
|
||||||
//feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
|
//feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
|
||||||
|
|
||||||
//test_blas();
|
//test_blas();
|
||||||
|
@ -511,7 +569,8 @@ int main(int argc, char *argv[])
|
||||||
//test_nist();
|
//test_nist();
|
||||||
//test_full();
|
//test_full();
|
||||||
//train_VOC();
|
//train_VOC();
|
||||||
features_VOC(part, total);
|
features_VOC_image(argv[1], argv[2], argv[3]);
|
||||||
|
printf("Success!\n");
|
||||||
//test_random_preprocess();
|
//test_random_preprocess();
|
||||||
//test_random_classify();
|
//test_random_classify();
|
||||||
//test_parser();
|
//test_parser();
|
||||||
|
|
Loading…
Reference in New Issue