diff --git a/build/darknet/x64/compute_mAP.cmd b/build/darknet/x64/compute_mAP.cmd new file mode 100644 index 00000000..8c5ba3cf --- /dev/null +++ b/build/darknet/x64/compute_mAP.cmd @@ -0,0 +1,16 @@ +rem C:\Users\Alex\AppData\Local\Programs\Python\Python36\Scripts\pip install numpy +rem C:\Users\Alex\AppData\Local\Programs\Python\Python36\Scripts\pip install cPickle +rem C:\Users\Alex\AppData\Local\Programs\Python\Python36\Scripts\pip install _pickle + + +rem darknet.exe detector valid data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights + +darknet.exe detector valid data/voc.data yolo-voc.cfg yolo-voc.weights + + +reval_voc_py3.py --year 2007 --classes data\voc.names --image_set test --voc_dir E:\VOC2007_2012\VOCtrainval_11-May-2012\VOCdevkit results + + + + +pause diff --git a/build/darknet/x64/reval_voc_py3.py b/build/darknet/x64/reval_voc_py3.py new file mode 100644 index 00000000..23f9ce3f --- /dev/null +++ b/build/darknet/x64/reval_voc_py3.py @@ -0,0 +1,104 @@ +#!/usr/bin/env python + +# Adapt from -> +# -------------------------------------------------------- +# Fast R-CNN +# Copyright (c) 2015 Microsoft +# Licensed under The MIT License [see LICENSE for details] +# Written by Ross Girshick +# -------------------------------------------------------- +# <- Written by Yaping Sun + +"""Reval = re-eval. Re-evaluate saved detections.""" + +import os, sys, argparse +import numpy as np +import _pickle as cPickle +#import cPickle + +from voc_eval_py3 import voc_eval + +def parse_args(): + """ + Parse input arguments + """ + parser = argparse.ArgumentParser(description='Re-evaluate results') + parser.add_argument('output_dir', nargs=1, help='results directory', + type=str) + parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str) + parser.add_argument('--year', dest='year', default='2017', type=str) + parser.add_argument('--image_set', dest='image_set', default='test', type=str) + + parser.add_argument('--classes', dest='class_file', default='data/voc.names', type=str) + + if len(sys.argv) == 1: + parser.print_help() + sys.exit(1) + + args = parser.parse_args() + return args + +def get_voc_results_file_template(image_set, out_dir = 'results'): + filename = 'comp4_det_' + image_set + '_{:s}.txt' + path = os.path.join(out_dir, filename) + return path + +def do_python_eval(devkit_path, year, image_set, classes, output_dir = 'results'): + annopath = os.path.join( + devkit_path, + 'VOC' + year, + 'Annotations', + '{}.xml') + imagesetfile = os.path.join( + devkit_path, + 'VOC' + year, + 'ImageSets', + 'Main', + image_set + '.txt') + cachedir = os.path.join(devkit_path, 'annotations_cache') + aps = [] + # The PASCAL VOC metric changed in 2010 + use_07_metric = True if int(year) < 2010 else False + print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No')) + print('devkit_path=',devkit_path,', year = ',year) + + if not os.path.isdir(output_dir): + os.mkdir(output_dir) + for i, cls in enumerate(classes): + if cls == '__background__': + continue + filename = get_voc_results_file_template(image_set).format(cls) + rec, prec, ap = voc_eval( + filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5, + use_07_metric=use_07_metric) + aps += [ap] + print('AP for {} = {:.4f}'.format(cls, ap)) + with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f: + cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f) + print('Mean AP = {:.4f}'.format(np.mean(aps))) + print('~~~~~~~~') + print('Results:') + for ap in aps: + print('{:.3f}'.format(ap)) + print('{:.3f}'.format(np.mean(aps))) + print('~~~~~~~~') + print('') + print('--------------------------------------------------------------') + print('Results computed with the **unofficial** Python eval code.') + print('Results should be very close to the official MATLAB eval code.') + print('-- Thanks, The Management') + print('--------------------------------------------------------------') + + + +if __name__ == '__main__': + args = parse_args() + + output_dir = os.path.abspath(args.output_dir[0]) + with open(args.class_file, 'r') as f: + lines = f.readlines() + + classes = [t.strip('\n') for t in lines] + + print('Evaluating detections') + do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir) diff --git a/build/darknet/x64/voc_eval_py3.py b/build/darknet/x64/voc_eval_py3.py new file mode 100644 index 00000000..13d07a9a --- /dev/null +++ b/build/darknet/x64/voc_eval_py3.py @@ -0,0 +1,201 @@ +# -------------------------------------------------------- +# Fast/er R-CNN +# Licensed under The MIT License [see LICENSE for details] +# Written by Bharath Hariharan +# -------------------------------------------------------- + +import xml.etree.ElementTree as ET +import os +#import cPickle +import _pickle as cPickle +import numpy as np + +def parse_rec(filename): + """ Parse a PASCAL VOC xml file """ + tree = ET.parse(filename) + objects = [] + for obj in tree.findall('object'): + obj_struct = {} + obj_struct['name'] = obj.find('name').text + #obj_struct['pose'] = obj.find('pose').text + #obj_struct['truncated'] = int(obj.find('truncated').text) + obj_struct['difficult'] = int(obj.find('difficult').text) + bbox = obj.find('bndbox') + obj_struct['bbox'] = [int(bbox.find('xmin').text), + int(bbox.find('ymin').text), + int(bbox.find('xmax').text), + int(bbox.find('ymax').text)] + objects.append(obj_struct) + + return objects + +def voc_ap(rec, prec, use_07_metric=False): + """ ap = voc_ap(rec, prec, [use_07_metric]) + Compute VOC AP given precision and recall. + If use_07_metric is true, uses the + VOC 07 11 point method (default:False). + """ + if use_07_metric: + # 11 point metric + ap = 0. + for t in np.arange(0., 1.1, 0.1): + if np.sum(rec >= t) == 0: + p = 0 + else: + p = np.max(prec[rec >= t]) + ap = ap + p / 11. + else: + # correct AP calculation + # first append sentinel values at the end + mrec = np.concatenate(([0.], rec, [1.])) + mpre = np.concatenate(([0.], prec, [0.])) + + # compute the precision envelope + for i in range(mpre.size - 1, 0, -1): + mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) + + # to calculate area under PR curve, look for points + # where X axis (recall) changes value + i = np.where(mrec[1:] != mrec[:-1])[0] + + # and sum (\Delta recall) * prec + ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) + return ap + +def voc_eval(detpath, + annopath, + imagesetfile, + classname, + cachedir, + ovthresh=0.5, + use_07_metric=False): + """rec, prec, ap = voc_eval(detpath, + annopath, + imagesetfile, + classname, + [ovthresh], + [use_07_metric]) + + Top level function that does the PASCAL VOC evaluation. + + detpath: Path to detections + detpath.format(classname) should produce the detection results file. + annopath: Path to annotations + annopath.format(imagename) should be the xml annotations file. + imagesetfile: Text file containing the list of images, one image per line. + classname: Category name (duh) + cachedir: Directory for caching the annotations + [ovthresh]: Overlap threshold (default = 0.5) + [use_07_metric]: Whether to use VOC07's 11 point AP computation + (default False) + """ + # assumes detections are in detpath.format(classname) + # assumes annotations are in annopath.format(imagename) + # assumes imagesetfile is a text file with each line an image name + # cachedir caches the annotations in a pickle file + + # first load gt + if not os.path.isdir(cachedir): + os.mkdir(cachedir) + cachefile = os.path.join(cachedir, 'annots.pkl') + # read list of images + with open(imagesetfile, 'r') as f: + lines = f.readlines() + imagenames = [x.strip() for x in lines] + + if not os.path.isfile(cachefile): + # load annots + recs = {} + for i, imagename in enumerate(imagenames): + recs[imagename] = parse_rec(annopath.format(imagename)) + #if i % 100 == 0: + #print('Reading annotation for {:d}/{:d}').format(i + 1, len(imagenames)) + # save + #print('Saving cached annotations to {:s}').format(cachefile) + with open(cachefile, 'wb') as f: + cPickle.dump(recs, f) + else: + # load + print('!!! cachefile = ',cachefile) + with open(cachefile, 'rb') as f: + recs = cPickle.load(f) + + # extract gt objects for this class + class_recs = {} + npos = 0 + for imagename in imagenames: + R = [obj for obj in recs[imagename] if obj['name'] == classname] + bbox = np.array([x['bbox'] for x in R]) + difficult = np.array([x['difficult'] for x in R]).astype(np.bool) + det = [False] * len(R) + npos = npos + sum(~difficult) + class_recs[imagename] = {'bbox': bbox, + 'difficult': difficult, + 'det': det} + + # read dets + detfile = detpath.format(classname) + with open(detfile, 'r') as f: + lines = f.readlines() + + splitlines = [x.strip().split(' ') for x in lines] + image_ids = [x[0] for x in splitlines] + confidence = np.array([float(x[1]) for x in splitlines]) + BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) + + # sort by confidence + sorted_ind = np.argsort(-confidence) + sorted_scores = np.sort(-confidence) + BB = BB[sorted_ind, :] + image_ids = [image_ids[x] for x in sorted_ind] + + # go down dets and mark TPs and FPs + nd = len(image_ids) + tp = np.zeros(nd) + fp = np.zeros(nd) + for d in range(nd): + R = class_recs[image_ids[d]] + bb = BB[d, :].astype(float) + ovmax = -np.inf + BBGT = R['bbox'].astype(float) + + if BBGT.size > 0: + # compute overlaps + # intersection + ixmin = np.maximum(BBGT[:, 0], bb[0]) + iymin = np.maximum(BBGT[:, 1], bb[1]) + ixmax = np.minimum(BBGT[:, 2], bb[2]) + iymax = np.minimum(BBGT[:, 3], bb[3]) + iw = np.maximum(ixmax - ixmin + 1., 0.) + ih = np.maximum(iymax - iymin + 1., 0.) + inters = iw * ih + + # union + uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + + (BBGT[:, 2] - BBGT[:, 0] + 1.) * + (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters) + + overlaps = inters / uni + ovmax = np.max(overlaps) + jmax = np.argmax(overlaps) + + if ovmax > ovthresh: + if not R['difficult'][jmax]: + if not R['det'][jmax]: + tp[d] = 1. + R['det'][jmax] = 1 + else: + fp[d] = 1. + else: + fp[d] = 1. + + # compute precision recall + fp = np.cumsum(fp) + tp = np.cumsum(tp) + rec = tp / float(npos) + # avoid divide by zero in case the first detection matches a difficult + # ground truth + prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) + ap = voc_ap(rec, prec, use_07_metric) + + return rec, prec, ap diff --git a/scripts/reval_voc_py3.py b/scripts/reval_voc_py3.py new file mode 100644 index 00000000..23f9ce3f --- /dev/null +++ b/scripts/reval_voc_py3.py @@ -0,0 +1,104 @@ +#!/usr/bin/env python + +# Adapt from -> +# -------------------------------------------------------- +# Fast R-CNN +# Copyright (c) 2015 Microsoft +# Licensed under The MIT License [see LICENSE for details] +# Written by Ross Girshick +# -------------------------------------------------------- +# <- Written by Yaping Sun + +"""Reval = re-eval. Re-evaluate saved detections.""" + +import os, sys, argparse +import numpy as np +import _pickle as cPickle +#import cPickle + +from voc_eval_py3 import voc_eval + +def parse_args(): + """ + Parse input arguments + """ + parser = argparse.ArgumentParser(description='Re-evaluate results') + parser.add_argument('output_dir', nargs=1, help='results directory', + type=str) + parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str) + parser.add_argument('--year', dest='year', default='2017', type=str) + parser.add_argument('--image_set', dest='image_set', default='test', type=str) + + parser.add_argument('--classes', dest='class_file', default='data/voc.names', type=str) + + if len(sys.argv) == 1: + parser.print_help() + sys.exit(1) + + args = parser.parse_args() + return args + +def get_voc_results_file_template(image_set, out_dir = 'results'): + filename = 'comp4_det_' + image_set + '_{:s}.txt' + path = os.path.join(out_dir, filename) + return path + +def do_python_eval(devkit_path, year, image_set, classes, output_dir = 'results'): + annopath = os.path.join( + devkit_path, + 'VOC' + year, + 'Annotations', + '{}.xml') + imagesetfile = os.path.join( + devkit_path, + 'VOC' + year, + 'ImageSets', + 'Main', + image_set + '.txt') + cachedir = os.path.join(devkit_path, 'annotations_cache') + aps = [] + # The PASCAL VOC metric changed in 2010 + use_07_metric = True if int(year) < 2010 else False + print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No')) + print('devkit_path=',devkit_path,', year = ',year) + + if not os.path.isdir(output_dir): + os.mkdir(output_dir) + for i, cls in enumerate(classes): + if cls == '__background__': + continue + filename = get_voc_results_file_template(image_set).format(cls) + rec, prec, ap = voc_eval( + filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5, + use_07_metric=use_07_metric) + aps += [ap] + print('AP for {} = {:.4f}'.format(cls, ap)) + with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f: + cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f) + print('Mean AP = {:.4f}'.format(np.mean(aps))) + print('~~~~~~~~') + print('Results:') + for ap in aps: + print('{:.3f}'.format(ap)) + print('{:.3f}'.format(np.mean(aps))) + print('~~~~~~~~') + print('') + print('--------------------------------------------------------------') + print('Results computed with the **unofficial** Python eval code.') + print('Results should be very close to the official MATLAB eval code.') + print('-- Thanks, The Management') + print('--------------------------------------------------------------') + + + +if __name__ == '__main__': + args = parse_args() + + output_dir = os.path.abspath(args.output_dir[0]) + with open(args.class_file, 'r') as f: + lines = f.readlines() + + classes = [t.strip('\n') for t in lines] + + print('Evaluating detections') + do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir) diff --git a/scripts/voc_eval_py3.py b/scripts/voc_eval_py3.py new file mode 100644 index 00000000..13d07a9a --- /dev/null +++ b/scripts/voc_eval_py3.py @@ -0,0 +1,201 @@ +# -------------------------------------------------------- +# Fast/er R-CNN +# Licensed under The MIT License [see LICENSE for details] +# Written by Bharath Hariharan +# -------------------------------------------------------- + +import xml.etree.ElementTree as ET +import os +#import cPickle +import _pickle as cPickle +import numpy as np + +def parse_rec(filename): + """ Parse a PASCAL VOC xml file """ + tree = ET.parse(filename) + objects = [] + for obj in tree.findall('object'): + obj_struct = {} + obj_struct['name'] = obj.find('name').text + #obj_struct['pose'] = obj.find('pose').text + #obj_struct['truncated'] = int(obj.find('truncated').text) + obj_struct['difficult'] = int(obj.find('difficult').text) + bbox = obj.find('bndbox') + obj_struct['bbox'] = [int(bbox.find('xmin').text), + int(bbox.find('ymin').text), + int(bbox.find('xmax').text), + int(bbox.find('ymax').text)] + objects.append(obj_struct) + + return objects + +def voc_ap(rec, prec, use_07_metric=False): + """ ap = voc_ap(rec, prec, [use_07_metric]) + Compute VOC AP given precision and recall. + If use_07_metric is true, uses the + VOC 07 11 point method (default:False). + """ + if use_07_metric: + # 11 point metric + ap = 0. + for t in np.arange(0., 1.1, 0.1): + if np.sum(rec >= t) == 0: + p = 0 + else: + p = np.max(prec[rec >= t]) + ap = ap + p / 11. + else: + # correct AP calculation + # first append sentinel values at the end + mrec = np.concatenate(([0.], rec, [1.])) + mpre = np.concatenate(([0.], prec, [0.])) + + # compute the precision envelope + for i in range(mpre.size - 1, 0, -1): + mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) + + # to calculate area under PR curve, look for points + # where X axis (recall) changes value + i = np.where(mrec[1:] != mrec[:-1])[0] + + # and sum (\Delta recall) * prec + ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) + return ap + +def voc_eval(detpath, + annopath, + imagesetfile, + classname, + cachedir, + ovthresh=0.5, + use_07_metric=False): + """rec, prec, ap = voc_eval(detpath, + annopath, + imagesetfile, + classname, + [ovthresh], + [use_07_metric]) + + Top level function that does the PASCAL VOC evaluation. + + detpath: Path to detections + detpath.format(classname) should produce the detection results file. + annopath: Path to annotations + annopath.format(imagename) should be the xml annotations file. + imagesetfile: Text file containing the list of images, one image per line. + classname: Category name (duh) + cachedir: Directory for caching the annotations + [ovthresh]: Overlap threshold (default = 0.5) + [use_07_metric]: Whether to use VOC07's 11 point AP computation + (default False) + """ + # assumes detections are in detpath.format(classname) + # assumes annotations are in annopath.format(imagename) + # assumes imagesetfile is a text file with each line an image name + # cachedir caches the annotations in a pickle file + + # first load gt + if not os.path.isdir(cachedir): + os.mkdir(cachedir) + cachefile = os.path.join(cachedir, 'annots.pkl') + # read list of images + with open(imagesetfile, 'r') as f: + lines = f.readlines() + imagenames = [x.strip() for x in lines] + + if not os.path.isfile(cachefile): + # load annots + recs = {} + for i, imagename in enumerate(imagenames): + recs[imagename] = parse_rec(annopath.format(imagename)) + #if i % 100 == 0: + #print('Reading annotation for {:d}/{:d}').format(i + 1, len(imagenames)) + # save + #print('Saving cached annotations to {:s}').format(cachefile) + with open(cachefile, 'wb') as f: + cPickle.dump(recs, f) + else: + # load + print('!!! cachefile = ',cachefile) + with open(cachefile, 'rb') as f: + recs = cPickle.load(f) + + # extract gt objects for this class + class_recs = {} + npos = 0 + for imagename in imagenames: + R = [obj for obj in recs[imagename] if obj['name'] == classname] + bbox = np.array([x['bbox'] for x in R]) + difficult = np.array([x['difficult'] for x in R]).astype(np.bool) + det = [False] * len(R) + npos = npos + sum(~difficult) + class_recs[imagename] = {'bbox': bbox, + 'difficult': difficult, + 'det': det} + + # read dets + detfile = detpath.format(classname) + with open(detfile, 'r') as f: + lines = f.readlines() + + splitlines = [x.strip().split(' ') for x in lines] + image_ids = [x[0] for x in splitlines] + confidence = np.array([float(x[1]) for x in splitlines]) + BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) + + # sort by confidence + sorted_ind = np.argsort(-confidence) + sorted_scores = np.sort(-confidence) + BB = BB[sorted_ind, :] + image_ids = [image_ids[x] for x in sorted_ind] + + # go down dets and mark TPs and FPs + nd = len(image_ids) + tp = np.zeros(nd) + fp = np.zeros(nd) + for d in range(nd): + R = class_recs[image_ids[d]] + bb = BB[d, :].astype(float) + ovmax = -np.inf + BBGT = R['bbox'].astype(float) + + if BBGT.size > 0: + # compute overlaps + # intersection + ixmin = np.maximum(BBGT[:, 0], bb[0]) + iymin = np.maximum(BBGT[:, 1], bb[1]) + ixmax = np.minimum(BBGT[:, 2], bb[2]) + iymax = np.minimum(BBGT[:, 3], bb[3]) + iw = np.maximum(ixmax - ixmin + 1., 0.) + ih = np.maximum(iymax - iymin + 1., 0.) + inters = iw * ih + + # union + uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + + (BBGT[:, 2] - BBGT[:, 0] + 1.) * + (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters) + + overlaps = inters / uni + ovmax = np.max(overlaps) + jmax = np.argmax(overlaps) + + if ovmax > ovthresh: + if not R['difficult'][jmax]: + if not R['det'][jmax]: + tp[d] = 1. + R['det'][jmax] = 1 + else: + fp[d] = 1. + else: + fp[d] = 1. + + # compute precision recall + fp = np.cumsum(fp) + tp = np.cumsum(tp) + rec = tp / float(npos) + # avoid divide by zero in case the first detection matches a difficult + # ground truth + prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) + ap = voc_ap(rec, prec, use_07_metric) + + return rec, prec, ap