mirror of https://github.com/AlexeyAB/darknet.git
Rewriting darknet_video.py to reuse darknet.py as a lib
This commit is contained in:
parent
64b217aa86
commit
022ce74fe9
|
@ -125,6 +125,15 @@ lib.network_width.restype = c_int
|
|||
lib.network_height.argtypes = [c_void_p]
|
||||
lib.network_height.restype = c_int
|
||||
|
||||
copy_image_from_bytes = lib.copy_image_from_bytes
|
||||
copy_image_from_bytes.argtypes = [IMAGE,c_char_p]
|
||||
|
||||
def network_width(net):
|
||||
return lib.network_width(net)
|
||||
|
||||
def network_height(net):
|
||||
return lib.network_height(net)
|
||||
|
||||
predict = lib.network_predict_ptr
|
||||
predict.argtypes = [c_void_p, POINTER(c_float)]
|
||||
predict.restype = POINTER(c_float)
|
||||
|
@ -223,6 +232,13 @@ def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45, debug= False):
|
|||
"""
|
||||
#pylint: disable= C0321
|
||||
im = load_image(image, 0, 0)
|
||||
if debug: print("Loaded image")
|
||||
ret = detect_image(net, meta, im, thresh, hier_thresh, nms, debug)
|
||||
free_image(im)
|
||||
if debug: print("freed image")
|
||||
return ret
|
||||
|
||||
def detect_image(net, meta, im, thresh=.5, hier_thresh=.5, nms=.45, debug= False):
|
||||
#import cv2
|
||||
#custom_image_bgr = cv2.imread(image) # use: detect(,,imagePath,)
|
||||
#custom_image = cv2.cvtColor(custom_image_bgr, cv2.COLOR_BGR2RGB)
|
||||
|
@ -230,7 +246,6 @@ def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45, debug= False):
|
|||
#import scipy.misc
|
||||
#custom_image = scipy.misc.imread(image)
|
||||
#im, arr = array_to_image(custom_image) # you should comment line below: free_image(im)
|
||||
if debug: print("Loaded image")
|
||||
num = c_int(0)
|
||||
if debug: print("Assigned num")
|
||||
pnum = pointer(num)
|
||||
|
@ -267,8 +282,6 @@ def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45, debug= False):
|
|||
if debug: print("did range")
|
||||
res = sorted(res, key=lambda x: -x[1])
|
||||
if debug: print("did sort")
|
||||
free_image(im)
|
||||
if debug: print("freed image")
|
||||
free_detections(dets, num)
|
||||
if debug: print("freed detections")
|
||||
return res
|
||||
|
|
|
@ -5,222 +5,7 @@ import os
|
|||
import cv2
|
||||
import numpy as np
|
||||
import time
|
||||
|
||||
|
||||
def sample(probs):
|
||||
s = sum(probs)
|
||||
probs = [a/s for a in probs]
|
||||
r = random.uniform(0, 1)
|
||||
for i in range(len(probs)):
|
||||
r = r - probs[i]
|
||||
if r <= 0:
|
||||
return i
|
||||
return len(probs)-1
|
||||
|
||||
|
||||
def c_array(ctype, values):
|
||||
arr = (ctype*len(values))()
|
||||
arr[:] = values
|
||||
return arr
|
||||
|
||||
|
||||
class BOX(Structure):
|
||||
_fields_ = [("x", c_float),
|
||||
("y", c_float),
|
||||
("w", c_float),
|
||||
("h", c_float)]
|
||||
|
||||
|
||||
class DETECTION(Structure):
|
||||
_fields_ = [("bbox", BOX),
|
||||
("classes", c_int),
|
||||
("prob", POINTER(c_float)),
|
||||
("mask", POINTER(c_float)),
|
||||
("objectness", c_float),
|
||||
("sort_class", c_int)]
|
||||
|
||||
|
||||
class IMAGE(Structure):
|
||||
_fields_ = [("w", c_int),
|
||||
("h", c_int),
|
||||
("c", c_int),
|
||||
("data", POINTER(c_float))]
|
||||
|
||||
|
||||
class METADATA(Structure):
|
||||
_fields_ = [("classes", c_int),
|
||||
("names", POINTER(c_char_p))]
|
||||
|
||||
|
||||
hasGPU = True
|
||||
|
||||
lib = CDLL("yolo_cpp_dll.dll", RTLD_GLOBAL)
|
||||
lib.network_width.argtypes = [c_void_p]
|
||||
lib.network_width.restype = c_int
|
||||
lib.network_height.argtypes = [c_void_p]
|
||||
lib.network_height.restype = c_int
|
||||
|
||||
predict = lib.network_predict_ptr
|
||||
predict.argtypes = [c_void_p, POINTER(c_float)]
|
||||
predict.restype = POINTER(c_float)
|
||||
|
||||
if hasGPU:
|
||||
set_gpu = lib.cuda_set_device
|
||||
set_gpu.argtypes = [c_int]
|
||||
|
||||
make_image = lib.make_image
|
||||
make_image.argtypes = [c_int, c_int, c_int]
|
||||
make_image.restype = IMAGE
|
||||
|
||||
get_network_boxes = lib.get_network_boxes
|
||||
get_network_boxes.argtypes = \
|
||||
[c_void_p, c_int, c_int, c_float, c_float, POINTER(
|
||||
c_int), c_int, POINTER(c_int), c_int]
|
||||
get_network_boxes.restype = POINTER(DETECTION)
|
||||
|
||||
make_network_boxes = lib.make_network_boxes
|
||||
make_network_boxes.argtypes = [c_void_p]
|
||||
make_network_boxes.restype = POINTER(DETECTION)
|
||||
|
||||
free_detections = lib.free_detections
|
||||
free_detections.argtypes = [POINTER(DETECTION), c_int]
|
||||
|
||||
free_ptrs = lib.free_ptrs
|
||||
free_ptrs.argtypes = [POINTER(c_void_p), c_int]
|
||||
|
||||
network_predict = lib.network_predict_ptr
|
||||
network_predict.argtypes = [c_void_p, POINTER(c_float)]
|
||||
|
||||
reset_rnn = lib.reset_rnn
|
||||
reset_rnn.argtypes = [c_void_p]
|
||||
|
||||
load_net = lib.load_network
|
||||
load_net.argtypes = [c_char_p, c_char_p, c_int]
|
||||
load_net.restype = c_void_p
|
||||
|
||||
load_net_custom = lib.load_network_custom
|
||||
load_net_custom.argtypes = [c_char_p, c_char_p, c_int, c_int]
|
||||
load_net_custom.restype = c_void_p
|
||||
|
||||
do_nms_obj = lib.do_nms_obj
|
||||
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
|
||||
|
||||
do_nms_sort = lib.do_nms_sort
|
||||
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
|
||||
|
||||
free_image = lib.free_image
|
||||
free_image.argtypes = [IMAGE]
|
||||
|
||||
letterbox_image = lib.letterbox_image
|
||||
letterbox_image.argtypes = [IMAGE, c_int, c_int]
|
||||
letterbox_image.restype = IMAGE
|
||||
|
||||
load_meta = lib.get_metadata
|
||||
lib.get_metadata.argtypes = [c_char_p]
|
||||
lib.get_metadata.restype = METADATA
|
||||
|
||||
load_image = lib.load_image_color
|
||||
load_image.argtypes = [c_char_p, c_int, c_int]
|
||||
load_image.restype = IMAGE
|
||||
|
||||
rgbgr_image = lib.rgbgr_image
|
||||
rgbgr_image.argtypes = [IMAGE]
|
||||
|
||||
predict_image = lib.network_predict_image
|
||||
predict_image.argtypes = [c_void_p, IMAGE]
|
||||
predict_image.restype = POINTER(c_float)
|
||||
|
||||
|
||||
def array_to_image(arr):
|
||||
import numpy as np
|
||||
arr = arr.transpose(2, 0, 1)
|
||||
c = arr.shape[0]
|
||||
h = arr.shape[1]
|
||||
w = arr.shape[2]
|
||||
arr = np.ascontiguousarray(arr.flat, dtype=np.float32) / 255.0
|
||||
data = arr.ctypes.data_as(POINTER(c_float))
|
||||
im = IMAGE(w, h, c, data)
|
||||
return im, arr
|
||||
|
||||
|
||||
def classify(net, meta, im):
|
||||
out = predict_image(net, im)
|
||||
res = []
|
||||
for i in range(meta.classes):
|
||||
if altNames is None:
|
||||
nameTag = meta.names[i]
|
||||
else:
|
||||
nameTag = altNames[i]
|
||||
res.append((nameTag, out[i]))
|
||||
res = sorted(res, key=lambda x: -x[1])
|
||||
return res
|
||||
|
||||
|
||||
def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45, debug=False):
|
||||
im, arr = array_to_image(image)
|
||||
if debug:
|
||||
print("Loaded image")
|
||||
num = c_int(0)
|
||||
if debug:
|
||||
print("Assigned num")
|
||||
pnum = pointer(num)
|
||||
if debug:
|
||||
print("Assigned pnum")
|
||||
predict_image(net, im)
|
||||
if debug:
|
||||
print("did prediction")
|
||||
# dets = get_network_boxes(
|
||||
# net, image.shape[1], image.shape[0],
|
||||
# thresh, hier_thresh,
|
||||
# None, 0, pnum, 0) # OpenCV
|
||||
dets = get_network_boxes(net, im.w, im.h,
|
||||
thresh, hier_thresh, None, 0, pnum, 0)
|
||||
if debug:
|
||||
print("Got dets")
|
||||
num = pnum[0]
|
||||
if debug:
|
||||
print("got zeroth index of pnum")
|
||||
if nms:
|
||||
do_nms_sort(dets, num, meta.classes, nms)
|
||||
if debug:
|
||||
print("did sort")
|
||||
res = []
|
||||
if debug:
|
||||
print("about to range")
|
||||
for j in range(num):
|
||||
if debug:
|
||||
print("Ranging on "+str(j)+" of "+str(num))
|
||||
if debug:
|
||||
print("Classes: "+str(meta), meta.classes, meta.names)
|
||||
for i in range(meta.classes):
|
||||
if debug:
|
||||
print("Class-ranging on "+str(i)+" of " +
|
||||
str(meta.classes)+"= "+str(dets[j].prob[i]))
|
||||
if dets[j].prob[i] > 0:
|
||||
b = dets[j].bbox
|
||||
if altNames is None:
|
||||
nameTag = meta.names[i]
|
||||
else:
|
||||
nameTag = altNames[i]
|
||||
if debug:
|
||||
print("Got bbox", b)
|
||||
print(nameTag)
|
||||
print(dets[j].prob[i])
|
||||
print((b.x, b.y, b.w, b.h))
|
||||
res.append((nameTag, dets[j].prob[i], (b.x, b.y, b.w, b.h)))
|
||||
if debug:
|
||||
print("did range")
|
||||
res = sorted(res, key=lambda x: -x[1])
|
||||
if debug:
|
||||
print("did sort")
|
||||
# free_image(im)
|
||||
if debug:
|
||||
print("freed image")
|
||||
free_detections(dets, num)
|
||||
if debug:
|
||||
print("freed detections")
|
||||
return res
|
||||
|
||||
import darknet
|
||||
|
||||
def convertBack(x, y, w, h):
|
||||
xmin = int(round(x - (w / 2)))
|
||||
|
@ -255,6 +40,7 @@ altNames = None
|
|||
|
||||
|
||||
def YOLO():
|
||||
|
||||
global metaMain, netMain, altNames
|
||||
configPath = "./cfg/yolov3.cfg"
|
||||
weightPath = "./yolov3.weights"
|
||||
|
@ -269,10 +55,10 @@ def YOLO():
|
|||
raise ValueError("Invalid data file path `" +
|
||||
os.path.abspath(metaPath)+"`")
|
||||
if netMain is None:
|
||||
netMain = load_net_custom(configPath.encode(
|
||||
netMain = darknet.load_net_custom(configPath.encode(
|
||||
"ascii"), weightPath.encode("ascii"), 0, 1) # batch size = 1
|
||||
if metaMain is None:
|
||||
metaMain = load_meta(metaPath.encode("ascii"))
|
||||
metaMain = darknet.load_meta(metaPath.encode("ascii"))
|
||||
if altNames is None:
|
||||
try:
|
||||
with open(metaPath) as metaFH:
|
||||
|
@ -299,17 +85,24 @@ def YOLO():
|
|||
cap.set(4, 720)
|
||||
out = cv2.VideoWriter(
|
||||
"output.avi", cv2.VideoWriter_fourcc(*"MJPG"), 10.0,
|
||||
(lib.network_width(netMain), lib.network_height(netMain)))
|
||||
(darknet.network_width(netMain), darknet.network_height(netMain)))
|
||||
print("Starting the YOLO loop...")
|
||||
|
||||
# Create an image we reuse for each detect
|
||||
darknet_image = darknet.make_image(darknet.network_width(netMain),
|
||||
darknet.network_height(netMain),3)
|
||||
while True:
|
||||
prev_time = time.time()
|
||||
ret, frame_read = cap.read()
|
||||
frame_rgb = cv2.cvtColor(frame_read, cv2.COLOR_BGR2RGB)
|
||||
frame_resized = cv2.resize(frame_rgb,
|
||||
(lib.network_width(netMain),
|
||||
lib.network_height(netMain)),
|
||||
(darknet.network_width(netMain),
|
||||
darknet.network_height(netMain)),
|
||||
interpolation=cv2.INTER_LINEAR)
|
||||
detections = detect(netMain, metaMain, frame_resized, thresh=0.25)
|
||||
|
||||
darknet.copy_image_from_bytes(darknet_image,frame_resized.tobytes())
|
||||
|
||||
detections = darknet.detect_image(netMain, metaMain, darknet_image, thresh=0.25)
|
||||
image = cvDrawBoxes(detections, frame_resized)
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
print(1/(time.time()-prev_time))
|
||||
|
|
Loading…
Reference in New Issue